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SURVEY ARTICLE

Textile-Sensing Wearable Systems for Continuous Motion Angle Estimation: 
A Systematic Review

Runhua Zhang , Leheng Chen , Yuanda Hu, Yueyao Zhang, Jiayi Chen, Tianzhan Liang, Xiaohua Sun, and  
Qi Wang 

College of Design and Innovation, Tongji University, Shanghai, China 

ABSTRACT 
Textile sensors have demonstrated significant potential in next-generation wearable systems due 
to their excellent performance and unobtrusive nature. By building specialized sensing networks 
and algorithms, textile-based wearable systems can estimate the continuous motion angles of 
human joints with desirable accuracies. This article offers a systematic review aimed at identifying 
key challenges in this field and encouraging further applications of textile strain sensor networks 
within the human–computer interaction (HCI) community. To achieve this, we conducted an 
exhaustive literature search across four major databases: IEEE Xplore, PubMed, Scopus, and Web 
of Science, spanning from January 2016 to August 2023. Applying inclusion and exclusion criteria, 
we narrowed down 2684 results to a total of 24 relevant papers. To analyze these studies, we pro
posed a framework that incorporates both technical aspects – such as textile strain sensors, sensor 
placement, algorithms, and technical evaluations – and contextual factors like target users, wear
ability, and application scenarios. Our analysis uncovered two critical research gaps: First, it exists 
an incongruity between the development of textile-based wearables and the advancements in tex
tile sensors. Second, there is a noticeable absence of contextual design considerations in this spe
cific domain. To address these issues, we offer discussions and recommendations from three 
perspectives: 1) enhancing the robustness of textile-sensing networks, 2) improving wearability, 
and 3) expanding application scenarios.
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Textile sensing network; 
joint angle estimation; 
motion monitoring; 
wearable technology   

1. Introduction

The rapid growth of wearable technologies has driven the 
development of wearable systems for human motion moni
toring, which has gained increasing attention in the engin
eering and Human-Computer Interaction (HCI) fields (M. 
Chen et al., 2017; Liang et al., 2021; Skach et al., 2018). 
According to the taxonomy proposed by Lopez-Nava and 
Munoz-Melendez (2016), human motion monitoring with 
wearable sensors can be divided into two categories: move
ment measurement and movement classification. Different 
from the latter, movement measurement emphasizes quanti
fying motion data, with joint angles being a critical param
eter to monitor. To take it a step further, the continuous 
joint angle monitoring, which means the joint angles can be 
predicted and outputted continuously with time-series sens
ing signals, has been considered a significant potential in 
specific scenarios, such as such as rehabilitation (Poitras 
et al., 2019) and athletics (Edwards et al., 2023; Van der 
Kruk & Reijne, 2018). Specifically, with continuous rehabili
tation movement angles, it is possible to efficiently evaluate 
the extent to which patients are developing unexpected 
abnormal movements, thereby providing timely guidance 
and correction and accelerating the recovery program (Tan 
et al., 2023). Within the domain of sports science, the 

capability for continuous monitoring of motion angles offers 
valuable insights into athlete performance and may preempt 
injuries through early detection of incorrect postures or 
movements (Edwards et al., 2023; Van der Kruk & Reijne, 
2018).

Among various sensing technologies for human joint 
angles monitoring, textile strain sensors have distinguished 
themselves as apt instruments for the task of estimating 
motion angles. By seamlessly incorporating conductive 
fibers, polymers, or other responsive materials into fabric 
structures (Islam et al., 2020), textile strain sensors are able 
to detect human motion as their electrical properties such as 
resistance or capacitance would change when the fabric is 
stretched according to human motion. Most importantly, 
thanks to their unique wearable features, they are widely 
regarded as one of the ideal marriages of functionality and 
wearability, heralding the next frontier in wearable technol
ogy (Islam et al., 2020; C. Jin & Bai, 2022; Q. Shi et al., 
2019). One of their most compelling advantages is their 
superior wearability, which offers a human-centric approach 
to data collection that traditional sensors cannot rival. 
Specifically, their soft, breathable, and lightweight properties 
make them ideal for wearable applications, adding minimal 
weight while maximizing comfort. Furthermore, the 
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dimensional compatibility (Hwang et al., 2022) allows textile 
sensors to be effortlessly and seamlessly integrated into 
clothing or other substrates, with a high degree of flexibility 
across various dimensions, such as fibers, yarns, and 
fabrics(Chen et al., 2024; J. Wang et al., 2020; Xiong et al., 
2021). For example, when woven into garments, they natur
ally conform to the body’s shape and movements, offering 
unparalleled comfort and freedom of motion, which is par
ticularly vital for long-term, continuous monitoring applica
tions. All these features enable textile sensors superior to 
conventional optical motion-capture systems, which often 
necessitate external setup, or inertial measurement units 
(IMUs) that compromise the wearability of the systems into 
which they are integrated (Caeiro-Rodr�ıguez et al., 2021; 
Zhang et al., 2020).

Beyond aforementioned wearable features, the recent sub
stantial progress from material science has created a unique 
opportunity for HCI community to broaden the applicability 
of textile-sensing wearable systems for the real-time moni
toring of joint angles across a variegated spectrum of con
texts and applications. These advancements not only involve 
the incorporation of state-of-the-art materials such as nano
materials but also extend to the development of new func
tionalities, such as energy harvesting e-textiles (Bhattarai 
et al., 2023; Dong et al., 2022; M. Li et al., 2022; M. Li et al., 
2023). Additionally, researchers have made strides in 
enhancing the practical attributes of these textile sensors, 
including their washability and durability (Nikolova et al., 
2021; Shak Sadi & Kumpikait_e, 2022). As such, there are 
plenty of studies which can offer insights and available 
resources for HCI community to design and develop all-in- 
one wearable systems that are capable of monitoring con
tinuous joint angles.

However, despite the clear benefits of wearable systems 
that utilize textile strain sensors for continuous motion angle 
estimation and concrete advancements from material sci
ence, there is a noticeable absence of systematic reviews that 
approach these technologies from a HCI perspective. Most 
of the existing literature reviews have originated from the 
field of material science and predominantly focus on the 
textile sensors themselves. These studies delve into aspects 
like novel materials, working principles, fabrication techni
ques, and performance metrics specific to human motion 
detection (Huang et al., 2022; X. Liu et al., 2022; Pyo et al., 
2021; Seyedin et al., 2019; Shuvo et al., 2022; J. Wang et al., 
2020; Yu et al., 2021). While these contributions offer 
invaluable updates on the state-of-the-art in textile sensors, 
they overlook the challenges that are of concern to the HCI 
community. For example, how to apply textile strain sensors 
in wearable systems for joint angles estimation, how to 
introduce this textile-sensing technology in wider contexts. 
These challenges involve several critical aspects such as the 
design and implementation of textile-sensing networks and 
the signal processing methodologies required for continuous 
angle estimation. As a result, these reviews cannot provide a 
comprehensive framework or directional insights for future 
research focusing on HCI. To fill this gap, our systematic 
review distinguishes itself by prioritizing the design, 

development, and implementation of textile-sensing wear
able systems that are proficient in estimating continuous 
human joint angles. Our objective is to both elucidate the 
existing challenges and discuss opportunities in this evolving 
field.

To fulfill this objective, this systematic review first under
takes a comprehensive literature search and introduces a 
novel framework centered on the implementation of wear
able systems within a HCI standpoint. This framework 
encompasses both technical and contextual dimensions. 
Utilizing this framework as a guide, we categorize, inven
tory, and analyze studies that meet our criteria – namely, 
textile-sensing wearable systems capable of estimating con
tinuous motion angles. In the discussion section, we identify 
two significant research gaps and offer insights for future 
investigations in three key areas: 1) enhancing the robust
ness of textile-sensing networks, 2) improving wearability, 
and 3) expanding application scenarios for this motion- 
monitoring technology. We anticipate that this systematic 
review will serve as a valuable resource for both seasoned 
researchers and newcomers alike, aiding in the development 
of a comprehensive understanding of the field and fostering 
inspiration for state-of-the-art innovations.

2. Methodology

2.1. Literature search strategy

To identify relevant literature on wearable systems for continu
ous human joint angle estimation with textile-sensing networks, 
we conducted a comprehensive search across four databases: 
IEEExplore, PubMed, Scopus, and Web of Science. Initially, we 
fully searched the studies published between January 2016 and 
July 2022. During the peer-review process, we conducted a 
second round of literature search to update our findings with 
publications released between August 2022 and August 2023. 
Both rounds included journal articles and peer-reviewed con
ference papers that were written in English. The search strategy 
involved following keywords: (“joint” OR “motion” OR 
“motor” OR “movement” OR “pose” OR “posture” 
OR “gesture”) AND (“monitor�” OR “sens�” OR “estimat�” 
OR “measur�” OR “detect�” OR “track�” OR “captur�”) AND 
(“textile” OR “fabric” OR “e-textiles” OR “yarn” OR “fabric- 
based” OR “textile-based”) AND (”wearable”).

2.2. Identifying eligible studies

We followed the Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA) guidelines (Page 
et al., 2021) to systematically select eligible papers in both 
rounds. First, we removed duplicates after implementing the 
comprehensive search strategy. Then, two reviewers (RZ and 
QW) independently screened the titles and abstracts of the 
remaining articles. Subsequently, the same two reviewers 
independently read the full text to assess whether the papers 
met the inclusion and exclusion criteria. In the case of dif
fering opinions, the reviewers reached agreements with other 
authors through discussion. If one research team published 
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several articles related to the same wearable system, we 
included the most relevant one based on the inclusion crite
ria. The PRISMA flowchart illustrating the selection process 
is shown in Figure 1. The detailed inclusion and exclusion 
criteria are presented as follows.

2.2.1. Inclusion criteria
� The study concerned a wearable system equipping with a 

textile-sensing network.
� The textile-sensing network included rational data proc

essing methods or algorithms that could predict continu
ous human joint angles from the time-series signals.

� The study reported monitoring performance, i.e., moni
toring accuracy.

� The study was published between January 2016 and 
August 2023, and written in English.

2.2.2. Exclusion criteria
� Reviews or books.
� The systems were designed for robots rather than humans.
� The system was not based on textile strain sensors.
� The system was not capable of outputting continuous 

joint angles from textile sensing signals.

2.3. Data extraction with a new framework

After identifying eligible studies, we further classified and 
inventoried them with a novel framework. As shown in 

Figure 2, the framework considered both technical and con
textual aspects, including crucial elements required for the 
development of a functional and usable wearable system 
with a textile-sensing network. The detailed instructions are 
provided below:

1. Technical matters: Once the specific joint to be moni
tored has been identified, the focus shifts to the con
struction of an effective textile-sensing network. 
Within the scope of this review, we deem three key 
aspects as critical for the development of such a net
work: i) textile strain sensors, which involves selecting 
the appropriate type of textile sensor as well as evalu
ating its sensing performance; ii) sensor placement, 
which concerns the strategic positioning of sensors 
around the target joint, especially in cases where mul
tiple sensors are required to capture complex joint 
movements; and iii) algorithms, entailing the develop
ment of computational methods for real-time predic
tion of joint angles based on time-series data from 
the textile sensors. Upon the establishment of the net
work, a technical evaluation should be conducted to 
validate the system’s reliability and accuracy in con
tinuous human motion monitoring.

2. Contextual matters: In addition to the technical aspects, 
it is crucial to contemplate how this technology can be 
seamlessly integrated into clinical or real-world settings. 
One strategy involves embedding textile-sensing net
works within wearable systems. This integration calls 
for further design considerations, such as application 

Figure 1. PRISMA flowchart of the results from literature research.
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scenarios, which refer to the specific contexts where the 
technology will be deployed; target user conditions, 
which pertain to the unique characteristics or needs of 
users within those scenarios; and wearability, which 
assesses whether the wearable systems equipped with 
textile-sensing networks meet the wearability criteria for 
a given context. These multifaceted considerations 
necessitate usability or clinical evaluations to confirm 
the system’s applicability for its intended use.

We applied this framework to analyze the eligible studies 
with both technical and contextual considerations. The find
ings were presented in the next section.

3. Findings

The literature search yielded a total of 2684 articles, with 
additional four articles included from citation searching. 
Following PRISMA guidelines, the full texts of 300 articles 
were retrieved. Ultimately, 24 papers that satisfied the prede
termined inclusion criteria were selected for review and their 
key information was summarized in Table 1. To make it 
easier to track these articles in the following figures, we 
have numbered them from 1 to 24, which also can be found 
in Table 1.

3.1. Technical matters for textile-sensing networks 
development

Addressing particular technical challenges is essential for 
furthering the development of textile-sensing networks. 
However, prior to discussing these technical elements, the 
primary prerequisite is to identify the specific joint angles 
that need monitoring. Therefore, in this section, we first 
catalog the target joint angles covered in the studies that 
met our inclusion criteria. Subsequently, we present detailed 
findings on three critical aspects of textile-sensing network 
development: textile strain sensors, sensor placement, and 
algorithms. Lastly, we provide information regarding the 
technical evaluations conducted, with a special focus on the 
monitoring accuracy reported in these studies.

3.1.1. Target joint angles
The 24 included articles spanned a diverse range of joint 
angles, encompassing various anatomical regions as detailed 
in Figure 3. These studies examined joints such as the hip 
(Gholami et al., 2019; Tavassolian et al., 2020), knee 
(Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, 
Carnevale, Presti, et al., 2021; Gholami et al., 2018; Gholami 
et al., 2019; Grassi et al., 2017; Gupta et al., 2021; S. Hu 
et al., 2019; Poomsalood et al., 2019; Ru et al., 2023; Totaro 

Figure 2. A framework centered on the implementation of wearable systems for joint angles estimation from a Human-Computer Interaction standpoint.
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Table 1. Summary chart of key information.

Number References Motion angles Types factor (GF) Hysterisis Linearity
Placement and  

numbers
Sensor placement  

strategies Algorithms Accuracy Substrate Method
Evaluation and  

participants number Scenarios

1 Mokhlespour Esfahani  
et al.,(2017)

Trunk Re 6 8% Error ¼ 2% Back (N¼ 12) Deformation  
measurement,  
and previous work

MLP �>2:7
�

Tight shirt – TE (N¼ 3) –

2 Totaro et al.,(2017) Knee, ankle Ca – – – Knee (N¼ 3) Ankle  
(N¼ 5)

Anatomy Multiple linear 
regression

�>4
�

Knee brace  
Ankle brace

Adhesive TE, UE (N¼ 2) –

3 Grassi et al.,(2017) Knee Re 2.56 14.80% 0.998 Knee (N¼ 1) Anatomy Simple linear models �>8:9
�

Knee brace Fixed by hooks TE (with a robot), UE  
(n¼ 1)

–

4 Esfahani & Nussbaum,(2018) Shoulder, trunk Re 6 8% Error ¼ 2% Lower back (N¼ 5)  
Shoulder  
(N¼ 6)

Previous work MLP �>1:3
�

(trunk) �>9:4
�

(shoulder)
Undershirt – TE (N¼ 16) –

5 Maselli et al.,(2018) Cervical Re 2.56 14.80% 0.998 Neck (N¼ 2) Anatomy Simple linear models �>12:31
�

(fl) �>6:04
�

(lb) �>10:16
�

(ro)
(On Skin) (On skin) TE (N¼ 5) –

6 Gholami et al.,(2018) Knee Re – – – Knee (N¼ 1) – Random forestþMLP �>6:97
�

(inter) �>3:02
�

(intra)
Tight trousers Sewing TE (N¼ 6) –

7 R. Liu et al.,(2019) Elbow Re �4.5 Quantified Quantified Elbow (N¼ 4) Anatomy Simple linear models �>9:69
�

Sleeve Adhesive and  
sewing

TE, UE (N¼ 10) –

8 S. Hu et al.,(2019) Knee Re – – – Knee (N¼ 1) – Simple linear models 0.91r (On Skin) (On skin) TE, UE (N¼ 1) –
9 Rezaei et al.,(2019) Trunk Re 5 10% Quantified Back (N¼ 18) Previous work Random forest �>4:26

�

(fl) �>3:53
�

(lb)  
�>3:44

�

(ro)
Sleeveless shirt Sewing TE (N¼ 12) –

10 Gholami et al.,(2019) Hip, knee, ankle Re 5 10% Quantified Pelvis (N¼ 4) Knee  
(N¼ 2)  
Ankle (N¼ 3)

Deformation  
measurement

CNNþMLP �>6:38
�

(inter) �>2:20
�

(intra)
Tight trousers Sewing TE (N¼ 10) Sports (running)

11 Poomsalood et al.,(2019) Knee Ca – – – Knee (N¼ 3) – Multiple linear 
regression

�>< 5
�

(7/9) (On Skin) (On skin) TE (N¼ 9) –

12 Y. Jin et al.,(2020) Shoudler Ca 1.23 1.50% 0.999 Shoulder (N¼ 8) Anatomy, sensing test Gradient boosting model  
based on decision 
trees

�>4:5
�

Tight shirt Sewing TE (N¼ 1) –

13 Vu et al.,(2020) Lumbar Ca – – – Around the lumbar  
(N¼ 10)

Previous study PCAþmultiple linear  
regression

�>9
�

(fl,lb) �>13:7
�

(ro) (On Skin) (On skin) TE (N¼ 12) Astronauts  
(spacesuit)

14 Tavassolian et al.,(2020) Hip In 0.055 – 0.985 Around the Pelvis  
(N¼ 4)

Deformation  
measurement

Random forest �>1:63
�

(sa) �>1:08
�

(fr)  
�>< 1:15

�

(tr)
Sport Shorts Sewing TE (N¼ 12) Sports (running)

15 Lau & Soh,(2020) Elbow Re – – – Elbow (N¼ 1) Anatomy and  
kinematics  
of the RPR Chain

Binary linear models 8.01�>
�

–10.72�>
�

– – TE on testbed –

16 Watson et al.,(2020) Knee Re – – – Knee (N¼ 1) – Binary linear models �>3:6
�

(average) Knee brace Adhesive & Sewing TE (N¼ 6) Rehabilitation
17 Zhu et al.,(2021) Elbow Re – – – Elbow (N¼ 6) – MLP with customised  

loss function
�>8:78

�

Elbowpad Sewing TE (N¼ 10) –

18 Di Tocco, Carnevale, Bravi,  
et al. (2021); Di Tocco,  
Carnevale, Presti, et al. 
(2021)

Knee Re 0.28 26.64% Error ¼ 23.9% Knee (N¼ 1) Deformation  
measurement

Binary linear models �>18:82
�

Knee guard Fixed by Metal  
Snaps

TE (N¼ 5) Rehabilitation

19 Di Tocco, Carnevale, Bravi, 
et al.  
(2021); Di Tocco,  
Carnevale, Presti, et al. 
(2021)

Elbow Re – – – Elbow (N¼ 1) – Binary linear models �>7:5
�

Elbow guard Fixed by buttons TE (N¼ 2) –

20 Gupta et al.,(2021) Knee Re – – – Knee (N¼ 1) Anatomy Sensing test Simple linear models �>16:46
�

(fl) Knee brace Adhesive & Sewing TE (n¼ 6) Rehabilitation
21 Robinson et al.,(2022) Shoulder, Elbow Re – – – Elbow (N¼ 1) 

Shoulder (N¼ 4)
Anatomy CNNþMLP �>9:7

�

(elbow) �>2:6
�

(shoulder)
Tight shirt – TE Robotics

22 Ru et al.,(2023) Knee, elbow Re – – 0.9835� 0.9907 Knee (N¼ 1) Elbow  
(N¼ 1)

– MLP �>2:68
�

(knee) �>3:04
�

(elbow)
Knee and  

elbow pads
– TE (n¼ 1) –

23 Zou et al.,(2023) Knee Re – – – Knee (N¼ 3) Anatomy Simple linear models �>< 6:15
�

(fl) Knee brace – TE (with a  
prosthetic limb)

Rehabilitation  
Robotics

24 X. Chen et al.,(2022) Elbow Ca – – 0.999 Elbow (N¼ 6) Sensing performance LSTMþMLP �>9:82
�

(single user) 
�>10:98

�

(multiple motion types)  
�>11:81

�

(multiple 
users)

Elbow pad Adhesive &  
hot pressed

TE (n¼ 12) UE (n¼ 9) Rehabilitation  
Athletes

footnote:
1. Column Sensor Types: Re: Resistive textile sensors, Ca: Capacitive textile sensors, In: Inductive texitle sensors.
2. Column Algorithms: MLP: multilayer perceptron; CNN: convolution neural network; PCA: Principal component analysis.
3. Column Accuracy: fl: flexion/extension, lb: lateral bending, ro: rotation, sa: sagittal plane, fr: frontal plane, tr: transverse plane.
4. Column Evaluation and Participants number: TE: technical evaluation; UE: usability evaluation.
5. “-” means “Not mentioned.”
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et al., 2017; Watson et al., 2020; Zou et al., 2023), ankle 
(Gholami et al., 2019; Totaro et al., 2017), neck (Maselli 
et al., 2018), shoulder (Esfahani & Nussbaum, 2018; Y. Jin 
et al., 2020; Robinson et al., 2022), elbow(X. Chen et al., 
2022; Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, 
Carnevale, Presti, et al., 2021; Lau & Soh, 2020; R. Liu et al., 
2019; Robinson et al., 2022; Ru et al., 2023; Zhu et al., 
2021), and trunk (Esfahani & Nussbaum, 2018; 
Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019; Vu 
et al., 2020).

A significant focus was placed on lower body kinetics, 
with 11 of the 24 studies honing in on this area (Di Tocco, 
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti, 
et al., 2021; Gholami et al., 2018, 2019; Gupta et al., 2021; S. 
Hu et al., 2019; Poomsalood et al., 2019; Ru et al., 2023; 
Tavassolian et al., 2020; Totaro et al., 2017; Watson et al., 
2020; Zou et al., 2023). Of these, eight dedicated their 
research to estimating knee joint angles in the sagittal plane 
(Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, 
Carnevale, Presti, et al., 2021; Gholami et al., 2018, 2019; 
Gupta et al., 2021; S. Hu et al., 2019; Poomsalood et al., 
2019; Ru et al., 2023; Totaro et al., 2017; Watson et al., 
2020; Zou et al., 2023). It should be noted that three of these 
studies aimed for multi-joint monitoring; for example, in 
the study by Totaro et al. (2017), a brace with five textile 
strain sensors was developed to measure knee joint angles, 
as well as ankle joint angles in three planes (sagittal, front, 
and transverse plane). The smart legging proposed by 
Gholami et al. (2019) was configured to monitor hip, knee, 
and ankle joint angles concurrently, while the system pro
posed by X. Chen et al. (2022) was engineered to estimate 
both elbow and knee angles.

On the other hand, 12 studies centered on upper body 
joint angles (X. Chen et al., 2022; Di Tocco, Carnevale, 
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021; 
Esfahani & Nussbaum, 2018; Y. Jin et al., 2020; R. Liu et al., 
2019; Maselli et al., 2018; Mokhlespour Esfahani et al., 2017; 
Rezaei et al., 2019; Robinson et al., 2022; Ru et al., 2023; Vu 
et al., 2020; Zhu et al., 2021). The elbows were often the 

focus, examined in a singular plane(X. Chen et al., 2022; Di 
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, 
Presti, et al., 2021; R. Liu et al., 2019; Robinson et al., 2022; 
Ru et al., 2023; Zhu et al., 2021), as were complex multi- 
plane neck angles (Maselli et al., 2018) and intricate shoul
der movements (Esfahani & Nussbaum, 2018; Y. Jin et al., 
2020; Robinson et al., 2022). Additionally, four articles 
delved into three-degree-of-freedom monitoring of the trunk 
or lumbar region (Esfahani & Nussbaum, 2018; 
Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019; Vu 
et al., 2020), which involved observing flexion, lateral bend
ing, and rotational angles.

Worth noting is that X. Chen et al. (2022); Grassi et al. 
(2017); Lau and Soh (2020) offered more general solutions, 
applicable to various body parts. The systems in these stud
ies are capable to measure flexion and extension in human 
movements, such as those involving the knee and elbow, 
rather than focusing on a single specific joint.

Methodologies for defining the monitored angles varied 
among the studies. Simple anatomical models were often 
used for joints with a single degree of freedom, like the 
knee, elbow, and neck. In several instances, knee and elbow 
joints were considered pulley systems (X. Chen et al., 2022; 
Grassi et al., 2017; Gupta et al., 2021; S. Hu et al., 2019; Lau 
& Soh, 2020; Robinson et al., 2022; Ru et al., 2023; Watson 
et al., 2020; Zou et al., 2023). The neck joint in study by 
Maselli et al. (2018), for instance, was treated as a spherical 
joint allowing for various types of movement. Alternatively, 
nine studies opted for vector-based or geometric relation
ships using reflective markers affixed to anatomical positions 
(Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, 
Carnevale, Presti, et al., 2021; Gholami et al., 2018, 2019; 
Poomsalood et al., 2019; Rezaei et al., 2019; Tavassolian 
et al., 2020; Totaro et al., 2017; Zhu et al., 2021). Some, like 
Y. Jin et al. (2020), Mokhlespour Esfahani et al. (2017), and 
Vu et al. (2020), adhered to coordinate systems recom
mended by the International Society of Biomechanics 
(ISB)(Wu et al., 2002, 2005) for complex motions. However, 
the study by Esfahani and Nussbaum (2018) lacked explicit 

Figure 3. The illustration of monitored joints among 24 eligible studies.
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definitions or references for the monitoring of multi-degree- 
of-freedom shoulder and low-back movements.

3.1.2. Textile strain sensors
The selection of textile sensors was the first consideration 
among the three matters of developing a textile-sensing net
work. In the context of continuous joint angle monitoring, 
textile strain sensors were applied in all included cases. The 
general working principle of textile strain sensors is that the 
sensing parameters would change while stretching caused by 
skin deformation or joint movement, thus the sensors are 
often designed as long stripes to accommodate the direction 
of stretching.

Although the fundamental working principle mentioned 
above applies to all strain sensors, the characteristics and 
performance of different sensors vary much according to 
different sensing principles (J. Wang et al., 2020), such as 
resistive effect, capacitive effect, etc. Among the 24 eligible 
studies, 3 different sensing principles were found, which 
brought three types of textile strain sensors:

� Resistive textile strain sensor, n¼ 18 (Di Tocco, 
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti, 
et al., 2021; Esfahani & Nussbaum, 2018; Gholami et al., 
2018, 2019; Grassi et al., 2017; Gupta et al., 2021; S. Hu 
et al., 2019; Lau & Soh, 2020; R. Liu et al., 2019; Maselli 
et al., 2018; Mokhlespour Esfahani et al., 2017; Rezaei 
et al., 2019; Robinson et al., 2022; Ru et al., 2023; 
Watson et al., 2020; Zhu et al., 2021; Zou et al., 2023).

� Capacitive textile strain sensor, n¼ 5 (X. Chen et al., 
2022; Y. Jin et al., 2020; Poomsalood et al., 2019; Totaro 
et al., 2017; Vu et al., 2020).

� Inductive textile strain sensor, n¼ 1 (Tavassolian et al., 
2020).

To further analysis, the different performance among 
these sensors, three key parameters that were always used 
for describing sensors’ performance (Homayounfar & 
Andrew, 2020; Nesser & Lubineau, 2021), namely sensitivity, 
hysteresis, and linearity, were paid attention in this review 
as follows:

� Sensitivity indicates the accuracy and efficiency of the 
sensor and is usually evaluated by gauge factor (GF), 
which is given by GF ¼ �>�R=R0e, where �>�R 
denotes the resistance variation (i.e., the difference 
between R as the resistance value under deformation and 
R0 as the initial value), and e is the applied strain 
(Homayounfar & Andrew, 2020). Usually, the higher GF 
denotes higher sensitivity.

� Hysteresis reflects that there is no unique correspondence 
between the observed sensing signal readings and stretch
ing length (Schmool & Mark�o, 2018). Typically, different 
sensing signal value curves will be presented under load
ing and unloading, while higher hysteresis means larger 
differences between two curves.

� Linearity, which always indicates the linear working 
range of textile strain sensor, measures the stability of 
the signal over an application range and is determined 
by the percentage of deviation of the output signal from 
the linear regression line (Homayounfar & Andrew, 
2020), and higher linearity implies a more predictable 
relation between strain and readings.

Resistive textile strain sensors are the most widely used 
sensors for measuring human movement. Most of them 
exhibit excellence in sensitivity (Homayounfar & Andrew, 
2020; X. Wang et al., 2022), and are worth considering for 
studies demand high sensitivity and large strain range along 
with large deformation. Among three types of sensors, 
resistive textile strain sensors were widely used in 18 of the 
eligible studies, measuring both one-degree-of-freedom and 
multi-degree-of-freedom joint angles, including trunk 
(Esfahani & Nussbaum, 2018; Mokhlespour Esfahani et al., 
2017; Rezaei et al., 2019) hip (Gholami et al., 2019), knee 
(Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, 
Carnevale, Presti, et al., 2021; Gholami et al., 2018, 2019; 
Grassi et al., 2017; Gupta et al., 2021; S. Hu et al., 2019; 
Robinson et al., 2022; Ru et al., 2023; Watson et al., 2020; 
Zou et al., 2023), ankle (Gholami et al., 2019), shoulder 
(Esfahani & Nussbaum, 2018; Robinson et al., 2022), neck 
(Maselli et al., 2018), and elbow (Di Tocco, Carnevale, 
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021; 
Lau & Soh, 2020; R. Liu et al., 2019; Robinson et al., 2022; 
Ru et al., 2023; Zhu et al., 2021). These sensors work on the 
resistive effect (J. Wang et al., 2020), where an external force 
deforms the strain sensors and changes the resistance of the 
conductive textile, thus measuring human motion by sensing 
signals variation. While this principle provides textile strain 
sensors with high sensitivity compared to capacitive ones, it 
also leads to considerable hysteresis (X. Wang et al., 2022). 
For instance, among the 15 studies with resistive strain sen
sors, eight of them reported GF values, with seven of them 
ranging from 2.56 to 6 (Esfahani & Nussbaum, 2018; 
Gholami et al., 2019; Grassi et al., 2017; R. Liu et al., 2019; 
Maselli et al., 2018; Mokhlespour Esfahani et al., 2017; 
Rezaei et al., 2019), and except one study by Di Tocco, 
Carnevale, Bravi, et al. (2021); Di Tocco, Carnevale, Presti, 
et al. (2021) with relatively low GF of 0.28. However, the 
hysteresis tended to be obvious in these studies, ranging 
from 8% to 14.8% (Esfahani & Nussbaum, 2018; Gholami 
et al., 2019; Grassi et al., 2017; Maselli et al., 2018; 
Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019), and 
even the hysteresis in study by Di Tocco, Carnevale, Bravi, 
et al. (2021); Di Tocco, Carnevale, Presti, et al. (2021) 
reached 26.64%. Notably, in the work from R. Liu et al. 
(2019), to avoid the deviation caused by hysteresis, textile 
pressure sensors were employed to assist in the determin
ation of the elbow motion state. In terms of linearity, most 
of the studies reported excellent performance although only 
five studies reported it quantitatively (Di Tocco, Carnevale, 
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021; 
Esfahani & Nussbaum, 2018; Grassi et al., 2017; Maselli 
et al., 2018; Mokhlespour Esfahani et al., 2017), with the 
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highest correlation coefficient being �>R2 ¼ 0:998 (Grassi 
et al., 2017; Maselli et al., 2018).

As for capacitive strain sensors, they generally have rela
tively low sensitivity, while they offer high linearity and neg
ligible hysteresis (S. Kim et al., 2017). Therefore, capacitive 
sensors are preferable considered for scenarios requiring 
high stability. Among 24 studies, five employed capacitive 
textile strain sensors to monitor knee (Poomsalood et al., 
2019; Totaro et al., 2017), ankle (Totaro et al., 2017), 
shoulder(Y. Jin et al., 2020), trunk (Vu et al., 2020), or 
elbow (X. Chen et al., 2022). These sensors operate similarly 
to conventional capacitors, using a three-layer sandwich 
structure (J. Wang et al., 2020). Specifically, they use con
ductive fabrics as electrodes and elastic insulating materials 
as the medium. When an external force is applied, it causes 
a change in capacitance due to the distance or parallel area 
of the capacitor plates, the distance between the two textile 
electrodes, and the relative permittivity of the capacitive 
medium changes. Consequently, joint angles could be moni
tored by tracking capacitance variation. In general, capaci
tive sensors achieve lower hysteresis than resistive strain 
sensors (X. Wang et al., 2022). For example, the hysteresis 
reported in study by Y. Jin et al. (2020) was only 1.5%, 
which was the lowest among the included studies. And cap
acitive sensors are also reckoned to excel at linearity 
(Homayounfar & Andrew, 2020). The two studies(Y. Jin 
et al., 2020; Zou et al., 2023) reporting linearity among five 
studies both achieved a superior correlation coefficient of 
�>R2 ¼ 0:999: However, compared with resistive sensors, 
capacitive strain sensors generally tend to show lower sensi
tivity (X. Wang et al., 2022). The study by Y. Jin et al. 
(2020) reported their GF of 1.23, which was significantly 
lower than most resistive sensors among the eligible studies.

Inductive textile strain sensors were used in only one 
study that aimed at hip joint angle monitoring (Tavassolian 
et al., 2020). While these sensors have low sensitivity, with a 
GF of only 0.055, which is far from the other types of sen
sor. They operate on the principles of electromagnetic 
induction, and involve copper wire coiled around an elastic 
thread. The resulting copper-coiled elastic thread was inte
grated into sports shorts to monitor hip angles. External 
forces cause variations in the inductance and self-inductance 
coefficients, which in turn leads to changes in voltage and 
current output. These changes enable the determination of 
joint angles. But note that this type of sensor exhibits 
remarkable performance in terms of relaxation, as it shows 
no relaxation during the experiment, which might be benefi
cial for ultra-long-term use.

3.1.3. Sensor placement
Designing a textile-sensing network for continuous joint 
angle monitoring necessitates careful consideration of the 
number, location, and orientation of textile sensors. These 
variables significantly influence the effectiveness of the tex
tile-sensing network (Mattmann et al., 2007; Mokhlespour 
Esfahani et al., 2017). To systematically catalog and illustrate 
the sensor placement formulas employed across 24 studies, 
we present a unified schematic in Figure 4. This schematic 

encompasses the number, location, and approximate orienta
tion of the textile sensors, as well as the strategies guiding 
their placement.

The number of textile strain sensors deployed in such 
networks is contingent upon the complexity of the move
ment being monitored. Generally, movements with higher 
degrees of freedom require a greater number of sensors for 
accurate measurement. For instance, monitoring a three- 
degree-of-freedom ankle joint is more complicated than 
monitoring a single-degree-of-freedom knee joint, thus 
necessitating additional sensors. Of the eligible studies, ten 
utilized a single textile strain sensor for estimating flexion 
and extension angles around the knee or elbow joint (Di 
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, 
Presti, et al., 2021; Gholami et al., 2018; Grassi et al., 2017; 
Gupta et al., 2021; S. Hu et al., 2019; Lau & Soh, 2020; 
Robinson et al., 2022; Ru et al., 2023; Watson et al., 2020). 
Notably, although three textile sensors were integrated into 
the knee brace in the study by Gupta et al. (2021), only one 
sensor’s data was utilized for angle estimation. Conversely, 
11 other studies employed between 2 and 9 textile strain 
sensors for single-planar and multi-planar joint angle esti
mations (X. Chen et al., 2022; Gholami et al., 2019; Y. Jin 
et al., 2020; R. Liu et al., 2019; Maselli et al., 2018; 
Poomsalood et al., 2019; Robinson et al., 2022; Tavassolian 
et al., 2020; Totaro et al., 2017; Zhu et al., 2021; Zou et al., 
2023). A notable case among them, is the elbow pad pro
posed by X. Chen et al. (2022) that equipped with six sen
sors for algorithm and wearability concerns. In the studies 
aimed at monitoring trunk angles (Esfahani & Nussbaum, 
2018; Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019; 
Vu et al., 2020), 12, 11, 18, and 10 textile strain sensors 
were allocated respectively to monitor the trunk angles with 
flexion, lateral bending, and rotation.

Regarding sensor location and orientation, various strat
egies have been adopted. The overarching objective is to 
position the textile sensors in areas experiencing maximum 
skin deformation during movement. This ensures that the 
sensors operate within their effective working ranges. 
Among the 24 studies, seven studies did not specify their 
methods (Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, 
Carnevale, Presti, et al., 2021; Gholami et al., 2018; S. Hu 
et al., 2019; Poomsalood et al., 2019; Ru et al., 2023; Watson 
et al., 2020; Zhu et al., 2021), which indicated that they 
decided the sensor placement by empirical anatomy know
ledge. These studies generally focused on simple, single- 
degree-of-freedom joints like the elbow and knee. In such 
cases, relying on empirical anatomical knowledge to identify 
maximum deformation areas was deemed acceptable.

While, the other 14 studies clearly explained the sensor 
placement strategies, including four categories as shown as 
follows:

� Anatomy analysis (X. Chen et al., 2022; Grassi et al., 
2017; Gupta et al., 2021; Y. Jin et al., 2020; Lau & Soh, 
2020; R. Liu et al., 2019; Maselli et al., 2018; Robinson 
et al., 2022; Totaro et al., 2017; Zou et al., 2023).
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� Optical deformation measurements (Di Tocco, Carnevale, 
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 
2021; Gholami et al., 2019; Mokhlespour Esfahani et al., 
2017; Tavassolian et al., 2020).

� Based on previous studies that measured deformation 
(Esfahani & Nussbaum, 2018; Rezaei et al., 2019; Vu 
et al., 2020).

� Sensor performance tests (X. Chen et al., 2022; Gupta 
et al., 2021; Y. Jin et al., 2020; Lau & Soh, 2020; Rezaei 
et al., 2019).

Locating textile strain sensors based on anatomical ana
lysis is a straightforward approach. For example, the authors 

in one study elucidated maximum deformation areas around 
the knee joint by leveraging anatomical knowledge (Totaro 
et al., 2017). Others determined sensor locations through the 
analysis of anatomical models’ rotational axes (R. Liu et al., 
2019; Maselli et al., 2018). In the study by Y. Jin et al. 
(2020), capacitive textile strain sensors were placed vertically 
along non-extension lines according to anatomy first, and 
capacitance changes tests were performed by iteration of 
sensor locations and orientations to optimize the sensor 
placement.

Deformation measurement is considered the most reliable 
strategy compared to others (Mokhlespour Esfahani et al., 
2017), because it provides quantified evidence to determine 

Figure 4. The schematic textile strain sensor placement strategies of the 24 eligible studies.
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the sensor placement. For example, the sensors’ deformation 
study on the upper trunk by Mattmann et al. (2008) was ref
erenced by Esfahani and Nussbaum (2018) and Rezaei et al. 
(2019). This method was usually applied in the textile- 
sensing networks that aimed at monitoring multi-degree-of- 
freedom human motion, gaining higher data collection 
accuracy, or using fewer sensors. In the studies by Di Tocco, 
Carnevale, Bravi, et al. (2021); Di Tocco, Carnevale, Presti, 
et al. (2021); Gholami et al. (2019); Mokhlespour Esfahani 
et al. (2017), it was exhaustively described how this method 
was carried out: typically, the fabric deformation was meas
ured by inviting subjects to wear tight-fitting garments with 
reflective markers and perform preset actions in the optical 
motion capture lab environment, and the set of marker 
points with largest deformation would be selected as the 
references for sensors’ location. Based on this strategy, 
deformation was measured around the pelvis (Gholami 
et al., 2019; Tavassolian et al., 2020), the knee joint (Di 
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, 
Presti, et al., 2021), and the upper trunk (Mokhlespour 
Esfahani et al., 2017). Although the study by Mokhlespour 
Esfahani et al. (2017) did not use a continuous motion 
tracking system, sensor placement was determined by taking 
photos of the 32 movements made by one subject wearing a 
tight garment with 90 reflective markers. The larger deform
ation area was selected for sensor placement through quali
tative analysis of these photos. Vu et al. (2020) located the 
sensors by drawing on the layout experience from 
Mokhlespour Esfahani et al. (2017) due to its higher 
credibility.

3.1.4. Algorithms
With the guidance from the proposed framework, the third 
technical matter concerns with the construction of algo
rithms capable of estimating continuous joint angles with 
time-series textile sensing data. To accomplish this, raw tex
tile sensing data undergo at least three distinct stages of 
processing in a conventional data pipeline. First, raw textile 
data are collected and pre-processed into a format suitable 
for the algorithm. Typically, raw data from textile sensors 
are usually in an arbitrary range and also a serial form, and 
the conventional operation will be to normalize the sensor 
readings range and save them in matrices. Then, the format
ted data, like a matrix, will be transferred to a feature 
extraction algorithm, which can extract relevant features for 
the target task. When dealing with a single textile sensor, 
researchers usually extract features from the temporal pat
tern change. Finally, these features will be fed into an infer
ence model that can produce the final results of target task. 
For angle estimation, the inference model can identify the 
specific patterns extracted by the feature extractor and assess 
their relevance to the moving angles. Based on this assess
ment, the model can estimate the moving angle accordingly.

Within this pipeline, two key elements have a significant 
impact on algorithm performance and are worth consider
ing: 1) data fusion between each step of multiple textile sen
sors (if applicable) that refers to the method of combination 
for data from textile sensors in textile-sensing networks, and 

2) the inference models that indicates the mathematical 
model preset to infer the angle from the processed sensor 
data.

In general, according to different stages to apply fusion 
operations, data fusion of multiple sensors can be performed 
at three distinct levels: data-level, feature-level, and decision- 
level (Gravina et al., 2017; Qiu et al., 2022). Among the eli
gible studies, eight studies employed only a single sensor, 
and also seldom studies in the rest employed data fusion 
techniques, with only five studies at data-level fusion 
(Gholami et al., 2018, 2019; Ru et al., 2023; Tavassolian 
et al., 2020; Vu et al., 2020), one study at feature-level 
(Gholami et al., 2019), and one study at decision level 
(Totaro et al., 2017).

In data-level, fusion operations integrate data from mul
tiple sensors into a single data set before feature extraction, 
mainly including denoising, feature pre-extraction, data clas
sification, and data compression. Some eligible studies 
applied data-level fusion techniques to enhance the perform
ance of their models. For example, Vu et al. (2020) used 
principal component analysis (PCA) to reduce the data from 
ten sensors to five principal dimensions, and then built a 
regression model based on the reduced data to estimate 
lumbar angles. Ru et al. (2023) integrated five one-dimen
sional sensor signal series into a two-dimensional matrix. 
This matrix was subsequently processed by a 2D convolu
tional neural network (CNN), facilitating the exploration of 
inter-series relationships. Tavassolian et al. (2020) performed 
arithmetic operations on each pair of sensor signal values, 
such as addition, subtraction, division, and multiplication, 
and reported better results on hip angles monitoring than 
using the original values. Gholami et al. (2019) calculated 
the first and second derivatives of the raw signal from nine 
textile sensors, and used them along with the raw signal to 
train their model. Unlike the other studies that fused data 
from multiple sensors or sources, Gholami et al. (2018) 
aimed at knee joint angles and applied a broader sense of 
data-level fusion by extracting features from one sensor sig
nal in different time segments, resulting in 788 features that 
were fed to their model. These studies demonstrated that 
such data-level fusion in time dimension improved their 
model compared to using the raw signal alone.

At feature-level, fusion operations combine features 
extracted from multiple data sources before sending them to 
an inference model. Gholami et al. (2019) fused features 
extracted by CNN to achieve their goal. They firstly 
employed data-level fusion before feature-level fusion as 
aforementioned. Specifically, they first combined and pre- 
processed data from nine sensors and formed them as a 
matrix of shape (60� 27), which then was fed into four 
layers of 2D CNN, eventually extracting 100 features of 
shape (26� 27). These features were subsequently flattened 
into one dimension and sent into a multilayer perceptron 
(MLP) for angle estimation of hip, knee, and ankle.

At decision-level, fusion operations synthesize the results 
produced by the inference model on individual sensors to 
make a further decision. R. Liu et al. (2019) integrated a 
pressure sensor into their textile, which can detect the 
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pressure generated by joint movement. This enables their 
textile to differentiate two motion states (loading, unloading) 
and a motionless state, consequently deciding the model 
used for final angle estimation.

Besides data-fusion, inference model employed also mat
ters. Based on their methods of inference, these systems can 
be generally divided into two categories: deduction and 
induction. Specifically, deductive approaches involve leverag
ing known knowledge, such as geometry, to build a model 
for predicting joint angles based on sensing data. Inductive 
approaches, on the other hand, indicate adapting models to 
data collected from sensors without making any assumptions 
on human’s movement. In another word, models need to 
discover the hidden relationship between sensor data and 
human’s movement by themselves.

Among the eligible studies, deductive methods mainly 
relied on geometry principles and deformation of sensors, 
such as elongation or strain, to estimate joint angles (Grassi 
et al., 2017; Gupta et al., 2021; S. Hu et al., 2019; R. Liu 
et al., 2019; Maselli et al., 2018) which was related to raw 
sensor characteristics such as capacitance or resistance val
ues. For example, S. Hu et al. (2019) assumed that the resist
ance change of the sensor was proportional to its change in 
length, and thus the change in the knee joint angle could be 
determined by multiplying the resistance change by the sen
sor sensitivity and dividing it by the radius of the knee joint. 
Additionally, Maselli et al. (2018) calculated the joint angle 
by dividing the elongation of each pair of sensors by the 
radius of the neck joint. In another study, R. Liu et al. 
(2019) first analyzed the anatomy of elbow joints to identify 
the geometric relationship between the deformation and the 
rotation of joint bones. They found that the joint rotation 
angle was linearly related to the difference between stretch 
lengths sensed by the dual strain fabric sensors.

In comparison, inductive methods have been used in a 
more diverse range of studies (X. Chen et al., 2022; Di 
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, 
Presti, et al., 2021; Esfahani & Nussbaum, 2018; Gholami 
et al., 2018, 2019; Y. Jin et al., 2020; Lau & Soh, 2020; 
Mokhlespour Esfahani et al., 2017; Poomsalood et al., 2019; 
Rezaei et al., 2019; Robinson et al., 2022; Ru et al., 2023; 
Tavassolian et al., 2020; Totaro et al., 2017; Vu et al., 2020; 
Watson et al., 2020; Zhu et al., 2021; Zou et al., 2023). 
These methods can be further categorized into two classes: 
simple linear regression and advanced machine learning.

Eight studies (Di Tocco, Carnevale, Bravi, et al., 2021; Di 
Tocco, Carnevale, Presti, et al., 2021; Lau & Soh, 2020; 
Poomsalood et al., 2019; Totaro et al., 2017; Vu et al., 2020; 
Watson et al., 2020; Zou et al., 2023) utilized simple linear 
regression to fit data pairs of sensor data and ground-truth 
joint angles, among which, the similar calculation patterns 
were shown. Take the study by Poomsalood et al. (2019) as 
an example, linear algebra techniques were used to deter
mine the equation coefficient between sensor output signals 
and quaternions obtained from an OptiTrack system.

Eleven studies (X. Chen et al., 2022; Esfahani & 
Nussbaum, 2018; Gholami et al., 2018, 2019; Gupta et al., 
2021; Y. Jin et al., 2020; Mokhlespour Esfahani et al., 2017; 

Rezaei et al., 2019; Robinson et al., 2022; Ru et al., 2023; 
Tavassolian et al., 2020; Zhu et al., 2021) introduced 
advanced machine learning algorithms into their work, 
including random forest and neural networks (NNs). For 
instance, Esfahani and Nussbaum (2018) used a MLP with 
one hidden layer containing 60 or 200 neurons to explore 
the relationship between raw sensor signals and angles of 
the low-back and shoulder. In another study (Rezaei et al., 
2019), random forest was used to achieve the same mission 
for the trunk. Gholami et al. (2018) combined these two 
approaches into their model by using random forest to 
select important time-serial features, which were then fed 
into an MLP containing three hidden layers with ten neu
rons each. Popular NN like CNN and recurrent NN (RNN) 
are also used in several studies (X. Chen et al., 2022; 
Gholami et al., 2019; Robinson et al., 2022). Gholami et al. 
(2019) used four layers of CNN to extract time-serial fea
tures, which were then fed into an MLP containing one hid
den layer with 100 neurons. Zou et al. (2023) used six layers 
of long short-term memory (LTSM) for feature extraction of 
six sensors, followed by one full connection layer for con
verting the output of LSTM to readable angle. It worth to 
mentioning that, within the inductive methods, advanced 
machine learning methods appeared to outperform simple 
regressions regarding absolute errors, which was evidenced 
by comparison results in studies by Esfahani and Nussbaum 
(2018); Totaro et al. (2017) that conducted both types of 
methods on their data.

Furthermore, it is important to underscore that two stud
ies (X. Chen et al., 2022; Zhu et al., 2021) tackled the issue 
of signal variation due to sensor aging or dislocation by 
employing transfer learning techniques. Specifically, Zhu 
et al. (2021) achieved sensor compatibility across different 
aging stages with a unique algorithm. They introduced a 
specialized loss function designed to minimize the maximum 
mean discrepancy (MMD) between prediction outcomes 
generated by new and aged sensors. On the other hand, uti
lizing unsupervised transfer learning, X. Chen et al. (2022) 
demonstrated system robustness in the face of arbitrary cir
cuitry modifications and certain lateral displacements of 
their sensing sleeve. Moreover, their approach yielded satis
factory performance across diverse users, joints, and 
motions, employing a unified model. They achieved this 
mainly depending on two steps. Initially, they applied fuzzy 
entropy calculations to the sensor data, followed by a reor
dering of the input data sequence. This step ensured that 
the order of the data was not contingent upon their inherent 
spatial positions but was instead related to their positional 
relevance to human joints. Subsequently, they computed the 
MMD between outcomes derived from the original dataset 
and those stemming from new data to serve as the loss 
function in their transfer learning framework.

In addition to the types of algorithm models, the subjects 
who use the models also matter. Several studies, such as the 
ones by Esfahani and Nussbaum (2018); Gholami et al. 
(2018, 2019), have conducted both intra-subject and inter- 
subject tests on their models. Intra-subject testing refers to 
training and testing the model on the same individuals or 
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group, while inter-subject testing refers to training the model 
on one group and testing it on another group. The angle 
monitoring errors in the studies by Esfahani and Nussbaum 
(2018); Gholami et al. (2018, 2019) demonstrated that intra- 
subject testing consistently outperforms inter-subject testing, 
which indicated that individual discrepancy plays a non-neg
ligible role in joint angle estimation by wearable.

3.1.5. Technical evaluation
Technical evaluation is a crucial step in verifying the effi
ciency and reliability of the proposed textile-sensing net
works. Figure 5 displays the indicators used to evaluate the 
textile-sensing networks among the included studies, includ
ing accuracy test in labs (all studies), repeatability (Di Tocco, 
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti, 
et al., 2021; Maselli et al., 2018; Tavassolian et al., 2020), 
accuracy test in daily life scenarios (S. Hu et al., 2019; Totaro 
et al., 2017), robustness (R. Liu et al., 2019; Mokhlespour 
Esfahani et al., 2017; Totaro et al., 2017), and washability (X. 
Chen et al., 2022; R. Liu et al., 2019; Watson et al., 2020).

All studies conducted accuracy evaluation in a laboratory 
environment, typically involving participants donning proto
types equipped with textile-sensing networks and performing 
target movements in a laboratory setting. The monitoring 
accuracy of the suggested textile-sensing networks was eval
uated by comparing the angle monitoring data from the 
proposed system with ground-truth angles. Besides, two 
studies also made the evaluation in daily life scenarios (S. 
Hu et al., 2019; Totaro et al., 2017). Of the 24 studies exam
ined, only R. Liu et al. (2019), Grassi et al. (2017) and X. 
Chen et al. (2022) evaluated users’ subjective perceptions, 
focusing on the wearable experience, i.e., comfort, of the 
wearable systems. As shown in Figure 5, the comfort was 
the only one indicator found used for evaluating the usabil
ity among the eligible studies.

Considering that washability presents a recurrent chal
lenge in real-world applications, it is important to note 
divergent findings across studies. For example, X. Chen 
et al. (2022) assert that their sensors can withstand machine 
washing for more than 60 cycles, whereas R. Liu et al. 
(2019) acknowledge that 60 cycles of machine washing 
resulted in a median angular error of 34.1�>� : These dis
parate outcomes highlight the need for further investigation 
into the practicality.

Additionally, the number of participants in the studies 
varied considerably. Five system evaluations (Gupta et al., 
2021; S. Hu et al., 2019; Y. Jin et al., 2020; Robinson et al., 
2022; Ru et al., 2023) recruited only one participant, while 
eight studies recruited ten or more participants (X. Chen 
et al., 2022; Esfahani & Nussbaum, 2018; Gholami et al., 
2019; R. Liu et al., 2019; Rezaei et al., 2019; Tavassolian 
et al., 2020; Vu et al., 2020; Zhu et al., 2021). As previously 
mentioned, the textile-sensing networks developed by Grassi 
et al. (2017) and Lau and Soh (2020) were designed to meas
ure human flexion and extension movements, not a single 
particular joint. Therefore, no participants were recruited for 
accuracy evaluation in these three studies. Grassi et al. 
(2017) evaluated the performance of their network by put
ting it on a robot that could provide ground-truth knee joint 
angles, while the evaluation conducted by Lau and Soh 
(2020) was based on a simulated elbow joint. Furthermore, a 
prosthetic limb was used by Zou et al. (2023). Additionally, 
none of the studies for rehabilitation purposes recruited 
patients for evaluation, only health subjects were included.

3.2. Contextual matters in real scenarios

The focus of the 24 eligible studies was predominantly on 
technical considerations, while contextual matters were not 
the primary scope of their objectives. Only one study expli
citly implemented the technology in a real-world context by 
integrating real-time angle monitoring with a robot designed 
to assist individuals with cognitive impairments in dressing 
(Robinson et al., 2022). While 16 other studies touched 
upon potential applications such as diagnostics, sports, 
robotics, and rehabilitation (X. Chen et al., 2022; Di Tocco, 
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti, 
et al., 2021; Esfahani & Nussbaum, 2018; Gholami et al., 
2018; Grassi et al., 2017; S. Hu et al., 2019; Y. Jin et al., 
2020; Lau & Soh, 2020; R. Liu et al., 2019; Maselli et al., 
2018; Mokhlespour Esfahani et al., 2017; Poomsalood et al., 
2019; Rezaei et al., 2019; Totaro et al., 2017; Zhu et al., 
2021; Zou et al., 2023), they did not explore in depth how 
their textile-sensing networks would operate within these 
settings. Additionally, eight studies delineated targeted scen
arios: two were intended for running support (Gholami 
et al., 2019; Tavassolian et al., 2020), one for monitoring 
lumbar angles in astronauts to prevent lower back pain (Vu 
et al., 2020), and the remaining for rehabilitation 

Figure 5. The schematic textile strain sensor placement strategies of the 24 eligible studies.
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purposes(X. Chen et al., 2022; Di Tocco, Carnevale, Bravi, 
et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021; Gupta 
et al., 2021; Watson et al., 2020; Zou et al., 2023). 
Nevertheless, these studies largely omitted a thorough dis
cussion of contextual design considerations.

Moreover, the majority of the studies focused primarily 
on users’ physical characteristics, often neglecting aspects 
related to target users’ perceptions, cognitive states, or sub
jective needs in real-life situations. With regard to wearable 
systems, while key features affecting the user experience – 
such as lightweight construction and comfort – were men
tioned in most of the included studies, only a few engaged 
in substantive discussion or evaluation of these factors (X. 
Chen et al., 2022; Grassi et al., 2017; R. Liu et al., 2019).

4. Discussion

In this article, we offer a comprehensive review of wearable 
systems equipped with textile sensors for the continuous 
estimation of human joint angles in recent years. Utilizing a 
proposed framework that takes into account both technical 
and contextual considerations, we analyze 24 articles and 
identify two significant research gaps that merit further 
exploration.

The first research gap (Gap 1) concerns the disparity 
between advancements in textile-sensing systems for angle 
monitoring and the progress made in the field of textile 
strain sensors. During our PRISMA workflow, we found a 
substantial body of material science research (n ¼ 171) 
focused on the development of versatile textile sensors cap
able of motion detection (Jiang et al., 2022; Z. Liu et al., 
2022; L. Zhou, Shen, et al., 2022). These studies have con
firmed excellent sensing performance by evaluating varia
tions in output signals, such as resistance or capacitance, 
corresponding to different human motion angles. The large 
volume of these material science studies compared to the 
number of eligible articles (n ¼ 24) highlights Gap 1, under
scoring an evident disparity in this field.

The second research gap (Gap 2) underscores the need 
for wearable systems to be proficient not only in the tech
nical aspects of textile-sensing networks for continuous 
angle estimation but also in addressing contextual considera
tions. These include application scenarios, wearability fac
tors, and the subjective needs of users in real-world 
contexts. As discussed in the findings section, most of the 
systems developed in the eligible studies are still in a nascent 
prototype stage. Limited evaluation results are available con
cerning practicality or usability, apart from assessments of 
accuracy performance. Future research should aim to 
explore specific application scenarios and HCI interfaces 
that leverage this textile-sensing technology.

To present additional key insights, challenges, and discus
sions in this field, we draw upon studies from material sci
ence, computer science, HCI, as well as broader research in 
the human motion monitoring field. For example, although 
we excluded studies on human movement classification, such 
as those by Avellar et al. (2022); K. K. Kim et al. (2022); B. 
Zhou, Geissler, et al. (2022), because they did not meet our 

criteria for continuous joint angle capabilities, these studies 
could offer valuable insights for applications in wider con
texts. To improve the organizational structure of our discus
sion, we have divided the content into three subsections: i) 
Developing Robust Textile-Sensing Networks, ii) Improving 
the Wearability of Wearable Systems, and iii) Expanding 
Application Scenarios for Continuous Joint Angle 
Monitoring with Textile-Sensing Networks. It is crucial to 
recognize that these subsections are not mutually exclusive 
but rather exhibit overlapping and interactive elements.

4.1. Developing Robust Textile-Sensing Networks

Textile-sensing networks are fundamental for textile-based 
wearable systems capable of continuously monitoring joint 
angles, which is a prerequisite for follow-up contextual 
applications. As shown in Figure 2, textile strain sensors, 
sensor placement, and algorithm were considered as three 
key matters for technical competent textile-sensing networks, 
and this subsection’s primary focus is on these matters.

4.1.1. Consider suitable sensing characteristics for differ
ent monitoring purposes
While human joint angle measurement based on textile 
strain sensors is a material-driven research field, different 
types of sensor exhibit diverse features with regard to the 
key parameters of sensitivity, hysteresis, and linearity.

Resistive textile strain sensors are the most widely used 
sensors for predicting human movement. According to the 
findings provided by material science (Homayounfar & 
Andrew, 2020; X. Wang et al., 2022), they usually have high 
sensitivity. Recent advancements have amplified this charac
teristic even further. Specifically, Zhai et al. (2023) and 
Duan et al. (2023) have engineered sensors with remarkably 
high GF, attaining values of 1275 and 653.4, respectively. 
These developments underscore the escalating capability of 
resistive textile strain sensors to deliver increasingly sensitive 
measurements. However, their performance in hysteresis is 
relatively unsatisfied, and the linearity characteristic is prone 
to deterioration at high strain (Homayounfar & Andrew, 
2020; X. Wang et al., 2022). Fortunately, effective solutions 
are being proposed to address the limitations of nonlinearity 
and high elastic hysteresis (Yang et al., 2017), and conse
quently contribute to consistent performance throughout the 
life cycle of sensors. Consequently, resistive sensors are 
anticipated to see broader application in future endeavors.

Compared to resistive sensors, capacitive strain sensors 
have relatively low sensitivity, but they offer high linearity 
and negligible hysteresis (S. Kim et al., 2017). It is note
worthy that some recent studies have been trying to address 
the limitation of low sensitivity and have achieved some 
progress. For example, X. Hu et al. (2022) developed a cap
acitive textile sensor with high sensitivity (GF ¼ 2.07). Such 
improvement makes capacitive sensors being more suitable 
for measuring either small or large angles of body move
ment. In general, capacitive sensors are preferable consid
ered for scenarios requiring high stability during long-term 
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use. Futhermore, when it comes to the considerations of 
long-term use, another parameter, i.e., relaxation should be 
taken into account. Relaxation refers to the phenomenon 
where the readings of sensors do not remain constant under 
a fixed strain due to the loose connection of the textile’s 
inner structure (X. Wang, Yang, et al., 2021).

In addition to aforementioned sensor types and parame
ters, researchers are supposed to remain sensitive to the lat
est advancements in fabric sensing technologies, as this may 
lead to the development of systems with higher accuracy 
and specialized sensing demands. For instance, despite the 
absence of piezoelectric textile sensors, they represent a 
promising future direction as they show self-power capabil
ities besides motion detecting (Babu et al., 2023; Fan et al., 
2023; Wan et al., 2023). Tajitsu (2020) had developed a sen
sor using piezoelectric poly-l-lactic acid (PLLA) fibers sewn 
directly onto clothing for walking motion detection.

4.1.2. Consider more convincing strategies for textile sen
sor placement
The correlation between textile deformation and joint angles 
forms the foundational principle for estimating joint move
ments, making the location, number, and orientation of tex
tile strain sensors crucial elements in textile-sensing 
networks. As the monitoring of joints with more complex 
movement features gains attention, the question of how to 
optimally position multiple sensors for a robust network 
becomes increasingly urgent. Researchers are moving 
towards more systematic approaches instead of relying solely 
on traditional, anatomically-based empirical methods. For 
example, Tormene et al. (2012) employed PCA to identify 
the most effective sensor placement for trunk movement 
detection. Currently, the most reliable method involves 
using optical motion tracking systems to pinpoint areas of 
maximum skin deformation during movement, thereby 
ensuring that the sensors are optimally stretched. This tech
nique was first employed by Mattmann et al. (2007), using 
an optical motion tracking system to place 21 textile sensors 
on the back for upper trunk posture classification. The find
ings of this study have subsequently been cited in other 
works (Esfahani & Nussbaum, 2018; Rezaei et al., 2019), 
reinforcing its methodological importance. Sensor place
ments determined through this approach are considered to 
be more readily transferable to subsequent studies, and it is 
highly recommended for future research to consider utiliz
ing this method. Furthermore, as demonstrated by X. Chen 
et al. (2022), the strategy of determining sensor placement 
based on calculating each sensor’s effective monitoring area 
offers an insightful approach.

4.1.3. Towards more general and reliable angle estimation 
algorithms
Despite various types of sensors and placement strategies, 
the ultimate performance of angle estimation among eligible 
studies was comparable, which could be credited to algo
rithms. Although the selected studies achieved acceptable 
results in either of the two key constituents of the 

processing pipeline (i.e., data fusion and inference model
ing), the implementation of more general and reliable angle 
estimation algorithms still faces evident limitations and 
challenges.

As for data fusion, only a few studies (Gholami et al., 2018, 
2019; Tavassolian et al., 2020; Totaro et al., 2017; Vu et al., 
2020) addressed this issue. The rest of the studies either 
achieved the task with a single sensor, which neglected the 
potential of multi-sensor fusion, or simply combined data 
from multiple sensors without applying any fusion techniques. 
However, both the selected studies in this review (Gholami 
et al., 2018; Tavassolian et al., 2020; Vu et al., 2020) and some 
recent studies (Padhy, 2021; PaPan et al., 2020; Qiu et al., 
2022; Yuan et al., 2020) have demonstrated that data fusion at 
any level and any modality can boost the final performance. 
For instance, Yuan et al. (2020) performed feature-level fusion 
on data from multiple sensors to recognize sign language, 
which involves complex upper limb and finger movements. 
They used a deep CNN to extract shallow and deep features, 
representing global and local information respectively, and 
combined them for further modeling. They achieved an accur
acy of 99.93%, demonstrating the potential of data fusion for 
complex human movement analysis.

As for the inference models, deductive approach is based 
on human anatomy and explores the relationship between 
kinematics and sensor deformation. This kind of method 
yielded acceptable and clear outcomes for joints with one- 
degree-of-freedom motions. However, the parameters of the 
equations require individual anthropometric data, which 
somewhat weakens the ease of widespread application of 
this method. By contrast, inductive methods are more reli
able in all aspects, especially advanced machine learning 
methods such as NNs that outperforms other inductive 
methods. This can be attributed to the strength of NNs in 
handling non-linear data and their compatibility with vague 
data. For example, the ever-changing relative positions 
between sensors and target joints (X. Chen et al., 2022; S. 
Hu et al., 2019; Rezaei et al., 2019) and the deformation 
properties of the skin, such as elastic deformation, recovery, 
and skin laxity, may introduce unexpected variations into 
conventional inference models (X. Chen et al., 2022). 
However, NNs can handle these challenges with deeper 
layers, larger neural units or even transfer learning. This 
may also explain why different sensor characteristics can 
achieve comparable results.

However, the method of inductive models also has its 
drawbacks. For example, these models may overfit their 
training data, as shown by the errors in inter-subject and 
intra-subject results. This may impair the generalization 
ability of the proposed textile-sensing networks. To tackle 
this, researchers can use more training data from diverse 
subjects (Esfahani & Nussbaum, 2018; Mokhlespour 
Esfahani et al., 2017), or adapt models to each subject 
(Gholami et al., 2018, 2019). Moreover, a specific loss func
tion in machine learning can guide models to consider these 
challenging factors and address these problems. For 
example, X. Chen et al. (2022) employed transfer learning 
techniques, specifically leveraging the MMD between distinct 

14 R. ZHANG ET AL.



users, to achieve satisfactory outcomes. Such an approach 
provides a promising approach that future research could 
adopt to tackle similar challenges.

Nevertheless, irrespective of the model type employed, 
sensor aging remains an intractable issue due to the inherent 
variability in original input data and evolving patterns. 
Several methodologies have been proposed to address this 
challenge. For example, X. Chen et al. (2024) deployed aver
age pooling layers and a min pooling layer to assess and 
calibrate shifting baselines. Zhu et al. (2021) implemented a 
loss function designed to quantify the estimation discrep
ancy between aging and new sensors, with which the infer
ence model will minimize this variance by learning common 
patterns discernible in both sensor types.

4.2. Improving the wearability of wearable systems

Wearability, defined as the interaction between wearable 
objects and the human body, significantly impacts user 
experience and acceptability (Gemperle et al., 1998). Beyond 
fundamental prerequisites such as lightweight construction 
and comfort, which are integral to the user’s experience with 
wearables, additional factors pertaining to the system’s prac
tical utility warrant consideration. These include methods of 
integration, power management, and washability. In the fol
lowing subsection, we offer a comprehensive discussion and 
provide recommendations aimed at enhancing wearability.

According to the classification by Seymour (2008), the 
levels of integration for wearable prototypes can be catego
rized into three distinct types: attachable, embedded, and 
integrated. In the majority of studies examined, textile sen
sors were either physically mounted or embedded into pre- 
existing textile substrates, typically through methods such as 
adhesion or sewing. These approaches predominantly result 
in lower degrees of integration, falling under the categories 
of either attachable or embedded. Two primary concerns 
arise from these methods of integration. First, the comfort 
of the wearer may be compromised, as the fixation techni
ques employed can adversely affect the flexibility and 
stretchability of the substrate material. Second, the potential 
for misalignment between the textile sensors and the sub
strate could introduce inaccuracies in monitoring outcomes, 
thereby undermining the sensor’s performance. However, 
advancements in dimensional compatibility (Hwang et al., 
2022) have enabled the integration of fibers, yarns, and fab
rics into non-conductive materials through textile fabrication 
techniques such as embroidery and knitting. Consequently, 
a higher level of integration in wearable systems is antici
pated. For instance, the knee pad developed by Gupta et al. 
(2023) for monitoring knee joint motion utilized stretchable 
textile sensors and exemplified an integrated-level system.

Regarding power considerations, the sensing networks 
described in the relevant literature generally operate under 
the assumption of a readily available power source. 
Conventional approaches, such as connection to an electrical 
grid or the inclusion of a battery system, may negatively 
impact the device’s wearability. To mitigate these challenges, 
alternative solutions such as piezoelectric textile sensors 

(Wan et al., 2023) and power-generating textiles should be 
considered. For instance, research by M. Li et al. (2021) has 
contributed to this area by developing flexible fiber-based 
Zn-ion batteries with a high energy density of 36.04 
�>mWh=cm3: Notably, these fibers demonstrate consider
able stretchability (up to 900%) and bending capacity (rang
ing from 0 to 180 degrees), indicating their potential for 
seamless integration into textile substrates. These advance
ments offer valuable insights into the feasibility of creating 
an integrated system that combines textile sensors, power 
sources, and substrates in a unified manner.

It is important to acknowledge that higher levels of inte
gration may compromise the ease of component replaceabil
ity. One potential solution to this challenge is the 
incorporation of sensors into detachable components, as evi
denced in studies where textile strain sensors were affixed to 
substrates using metal snaps or buttons (Di Tocco, 
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti, 
et al., 2021). While this method of attachment facilitates 
both sensor replacement and substrate washability, it may 
introduce measurement inaccuracies if the sensors are not in 
direct contact with the substrate. In summary, a myriad of 
integration methods exist in the literature, and the selection 
among them should be predicated on the specific objectives 
and potential application contexts of each study.

Additionally, the aspect of washability, which significantly 
contributes to the practical utility of wearable systems, has 
been largely neglected in the studies under consideration. 
However, it is noteworthy that a growing body of research 
in material science has begun to address this issue (Duan 
et al., 2023; M. Li et al., 2022; Z. Li et al., 2021). For 
example, a study by M. Li et al. (2022) introduced a fiber- 
based Zn battery rescue rope that displayed remarkable 
resilience under extreme conditions of fire and water expos
ure. In a similar vein, research by Duan et al. (2023) pre
sented a stretch-tolerant, super-hydrophobic strain sensor 
with exceptional water-resistant properties. These advance
ments in sensor technology provide promising directions for 
incorporating washability considerations in future research.

4.3. Expanding application scenarios

According to the findings, the developed wearable systems 
showed acceptable accuracy for continuous joint angle mon
itoring. However, the research gap 2 indicated that most of 
the systems were still in a primitive prototype stage. It is not 
yet clear in which specific application scenarios these sys
tems could be further leveraged. By combing the insightful 
literature in both motion monitoring and HCI fields, as 
shown in Figure 6, some promising application domains 
were discussed in this subsection.

4.3.1. Textile-based human motion measurement may be 
the new growth point of rehabilitation medicine
Rehabilitation-related applications have long been a primary 
focus of wearable systems for human movement monitoring, 
as noted in multiple studies (M. Chen et al., 2017; McLaren 
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et al., 2016; Semjonova et al., 2020). Insights from studies 
aimed at human activity classification, applied in a wide 
range of scenarios like gait recognition for rehabilitation 
(Wei et al., 2023) and sports rehabilitation (Tolba & Al- 
Makhadmeh, 2020), support this focus. Given that the stud
ies we included demonstrate the potential of textile-sensing 
wearables for continuous joint angle estimation, the timing 
is ideal for HCI researchers to incorporate these textile 
sensors into actual rehabilitation or medical settings for 
usability and clinical performance assessment. On one hand, 
in-depth collaboration with clinical experts could benefit 
common rehabilitation scenarios such as stroke-induced 
physical dysfunction and musculoskeletal injuries. These 
conditions could be better managed through real-time moni
toring of abnormal movements using textile-sensing net
works. On the other hand, the high flexibility and low 
intrusiveness of textile sensors offer a higher comfort level, 
which is especially important in a rehabilitation context. 
This technology also addresses psychological needs of 
patients, including privacy concerns and self-esteem.

4.3.2. Elegant interactive interfaces for professionalism 
and recreation are expected
As a large number of studies from material science, HCI 
and engineering have demonstrated the versatility of textile 
sensors across various scenarios (Xu et al., 2023), the tech
nology for continuous joint angle estimation, based on tex
tile-sensing networks, also holds great promise. For wearable 
scenarios, it has potential applications in a wide range of 
areas including special occasion coveralls, professional 
sports, entertainment and. Despite the limited number of 
application cases in eligible studies, research focusing on 
human activity classification has garnered significant atten
tion and could offer valuable insights (Q. Liu et al., 2023). 
For example, MIT Media Lab (Tibbits, n.d.) explored how 

to use textile strain fibers in spacesuits to monitor astro
naut’s elbow movement. In the entertainment industry, 
Liang et al. (2021) developed a smart dance leotard based 
on fabric sensors that assists dancers with their movements, 
while Greinke et al. (2021) designed a jacket that detects the 
conductor’s movement to improve orchestra performances. 
On the other hand, beyond wearables, more interactive 
interfaces based on joint angle monitoring are expected to 
emerge, including those in popular HCI research fields, such 
as intelligent cockpit, smart home, artistic expression (Tepe 
et al., 2023), mixed realities (XR)(Wen et al., 2020).

4.3.3. Further usability and clinical evaluations deserve 
more attention
The included studies primarily focused on technical evalua
tions and did not provide tangible or perceptible feedback 
for end-users, making it challenging to conduct usability 
evaluations with participants. However, as joint angle esti
mation research expands into wider application scenarios, 
clear and effective feedback will become a prerequisite for 
evaluating wearable systems in real-world scenarios, allowing 
participants to better interact with wearable systems and 
provide valuable insights for researchers. Miniature displays, 
wearable actuators, or mobile phone apps are traditional 
feedback modules that can be incorporated into wearable 
devices or separate devices. Besides, the textile-based feed
back modules are also worth considering (J. Shi et al., 2020), 
such as luminous fibers (Olwal et al., 2018), thermochromic 
fabrics (Q. Wang, Ye, et al., 2021), and knitted textile vibra
tion modules (J. H. Kim et al., 2022), etc.

Once the system is capable of feedback, there is the possi
bility of further evaluation. As also suggested in an earlier 
review relating to e-textiles and rehabilitation (McLaren 
et al., 2016), in the realm of wearable systems for rehabilita
tion, it is crucial to conduct further usability and clinical 

Figure 6. Illustration of possible application scenarios for future research.
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testing to ensure their efficacy. To enhance the credibility of 
these systems, evaluations should involve patients under
going rehabilitation training. Additionally, the participation 
of physiotherapists in evaluation sessions can provide valu
able advice and guidance for researchers to iterative and 
improve the system. It is important to note that limited test
ing time may introduce bias in the results. Long-term evalu
ation, on the other hand, can help analyze the monitoring 
performance of the system and provide insights into the 
wearability and lifespan of the wearable systems.

5. Conclusion

In this systematic review, 24 eligible wearable systems equip
ping with textile strain sensors for continuous human joint 
angle estimation were analyzed with the proposed framework. 
The findings suggested that the existing textile-sensing net
works were capable for monitoring most parts of the body’s 
continuous joint angles with satisfactory accuracy, but there 
were still challenges in terms of both technical and contextual 
matters. On one hand, more compact collaborations among 
experts from different disciplines are expected for textile-sens
ing networks building, including applying textile sensors that 
show better performance, employing more convincing sensor 
placement strategies, and constructing more robust algo
rithms. On the other hand, these studies only made superficial 
references to possible application targets, and there was still a 
lack of in-depth research or application demonstrations based 
on pathological or psychological disorders. Vast application 
scenarios like rehabilitation, professional athletics, and enter
tainment, and also the usability evaluation in these cases are to 
be explored. Overall, this paper examined wearable systems 
for continuous human motion estimation based on textile sen
sors, using a new proposed framework. We do hope the find
ings, discussions, and insights presented could benefit more 
researchers to contribute to diminishing the existing research 
challenges mentioned in this field.
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