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ABSTRACT

Textile sensors have demonstrated significant potential in next-generation wearable systems due
to their excellent performance and unobtrusive nature. By building specialized sensing networks
and algorithms, textile-based wearable systems can estimate the continuous motion angles of
human joints with desirable accuracies. This article offers a systematic review aimed at identifying
key challenges in this field and encouraging further applications of textile strain sensor networks
within the human-computer interaction (HCl) community. To achieve this, we conducted an
exhaustive literature search across four major databases: IEEE Xplore, PubMed, Scopus, and Web
of Science, spanning from January 2016 to August 2023. Applying inclusion and exclusion criteria,
we narrowed down 2684 results to a total of 24 relevant papers. To analyze these studies, we pro-
posed a framework that incorporates both technical aspects — such as textile strain sensors, sensor
placement, algorithms, and technical evaluations — and contextual factors like target users, wear-
ability, and application scenarios. Our analysis uncovered two critical research gaps: First, it exists
an incongruity between the development of textile-based wearables and the advancements in tex-
tile sensors. Second, there is a noticeable absence of contextual design considerations in this spe-
cific domain. To address these issues, we offer discussions and recommendations from three
perspectives: 1) enhancing the robustness of textile-sensing networks, 2) improving wearability,
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and 3) expanding application scenarios.

1. Introduction

The rapid growth of wearable technologies has driven the
development of wearable systems for human motion moni-
toring, which has gained increasing attention in the engin-
eering and Human-Computer Interaction (HCI) fields (M.
Chen et al, 2017; Liang et al., 2021; Skach et al., 2018).
According to the taxonomy proposed by Lopez-Nava and
Munoz-Melendez (2016), human motion monitoring with
wearable sensors can be divided into two categories: move-
ment measurement and movement classification. Different
from the latter, movement measurement emphasizes quanti-
fying motion data, with joint angles being a critical param-
eter to monitor. To take it a step further, the continuous
joint angle monitoring, which means the joint angles can be
predicted and outputted continuously with time-series sens-
ing signals, has been considered a significant potential in
specific scenarios, such as such as rehabilitation (Poitras
et al, 2019) and athletics (Edwards et al., 2023; Van der
Kruk & Reijne, 2018). Specifically, with continuous rehabili-
tation movement angles, it is possible to efficiently evaluate
the extent to which patients are developing unexpected
abnormal movements, thereby providing timely guidance
and correction and accelerating the recovery program (Tan
et al., 2023). Within the domain of sports science, the

capability for continuous monitoring of motion angles offers
valuable insights into athlete performance and may preempt
injuries through early detection of incorrect postures or
movements (Edwards et al., 2023; Van der Kruk & Reijne,
2018).

Among various sensing technologies for human joint
angles monitoring, textile strain sensors have distinguished
themselves as apt instruments for the task of estimating
motion angles. By seamlessly incorporating conductive
fibers, polymers, or other responsive materials into fabric
structures (Islam et al., 2020), textile strain sensors are able
to detect human motion as their electrical properties such as
resistance or capacitance would change when the fabric is
stretched according to human motion. Most importantly,
thanks to their unique wearable features, they are widely
regarded as one of the ideal marriages of functionality and
wearability, heralding the next frontier in wearable technol-
ogy (Islam et al, 2020; C. Jin & Bai, 2022; Q. Shi et al,
2019). One of their most compelling advantages is their
superior wearability, which offers a human-centric approach
to data collection that traditional sensors cannot rival.
Specifically, their soft, breathable, and lightweight properties
make them ideal for wearable applications, adding minimal
weight while maximizing comfort. Furthermore, the
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dimensional compatibility (Hwang et al., 2022) allows textile
sensors to be effortlessly and seamlessly integrated into
clothing or other substrates, with a high degree of flexibility
across various dimensions, such as fibers, yarns, and
fabrics(Chen et al., 2024; J. Wang et al., 2020; Xiong et al.,
2021). For example, when woven into garments, they natur-
ally conform to the body’s shape and movements, offering
unparalleled comfort and freedom of motion, which is par-
ticularly vital for long-term, continuous monitoring applica-
tions. All these features enable textile sensors superior to
conventional optical motion-capture systems, which often
necessitate external setup, or inertial measurement units
(IMUs) that compromise the wearability of the systems into
which they are integrated (Caeiro-Rodriguez et al., 2021;
Zhang et al., 2020).

Beyond aforementioned wearable features, the recent sub-
stantial progress from material science has created a unique
opportunity for HCI community to broaden the applicability
of textile-sensing wearable systems for the real-time moni-
toring of joint angles across a variegated spectrum of con-
texts and applications. These advancements not only involve
the incorporation of state-of-the-art materials such as nano-
materials but also extend to the development of new func-
tionalities, such as energy harvesting e-textiles (Bhattarai
et al,, 2023; Dong et al.,, 2022; M. Li et al.,, 2022; M. Li et al,,
2023). Additionally, researchers have made strides in
enhancing the practical attributes of these textile sensors,
including their washability and durability (Nikolova et al.,
2021; Shak Sadi & Kumpikaité, 2022). As such, there are
plenty of studies which can offer insights and available
resources for HCI community to design and develop all-in-
one wearable systems that are capable of monitoring con-
tinuous joint angles.

However, despite the clear benefits of wearable systems
that utilize textile strain sensors for continuous motion angle
estimation and concrete advancements from material sci-
ence, there is a noticeable absence of systematic reviews that
approach these technologies from a HCI perspective. Most
of the existing literature reviews have originated from the
field of material science and predominantly focus on the
textile sensors themselves. These studies delve into aspects
like novel materials, working principles, fabrication techni-
ques, and performance metrics specific to human motion
detection (Huang et al., 2022; X. Liu et al.,, 2022; Pyo et al,,
2021; Seyedin et al., 2019; Shuvo et al., 2022; J. Wang et al,,
2020; Yu et al., 2021). While these contributions offer
invaluable updates on the state-of-the-art in textile sensors,
they overlook the challenges that are of concern to the HCI
community. For example, how to apply textile strain sensors
in wearable systems for joint angles estimation, how to
introduce this textile-sensing technology in wider contexts.
These challenges involve several critical aspects such as the
design and implementation of textile-sensing networks and
the signal processing methodologies required for continuous
angle estimation. As a result, these reviews cannot provide a
comprehensive framework or directional insights for future
research focusing on HCI. To fill this gap, our systematic
review distinguishes itself by prioritizing the design,

development, and implementation of textile-sensing wear-
able systems that are proficient in estimating continuous
human joint angles. Our objective is to both elucidate the
existing challenges and discuss opportunities in this evolving
field.

To fulfill this objective, this systematic review first under-
takes a comprehensive literature search and introduces a
novel framework centered on the implementation of wear-
able systems within a HCI standpoint. This framework
encompasses both technical and contextual dimensions.
Utilizing this framework as a guide, we categorize, inven-
tory, and analyze studies that meet our criteria — namely,
textile-sensing wearable systems capable of estimating con-
tinuous motion angles. In the discussion section, we identify
two significant research gaps and offer insights for future
investigations in three key areas: 1) enhancing the robust-
ness of textile-sensing networks, 2) improving wearability,
and 3) expanding application scenarios for this motion-
monitoring technology. We anticipate that this systematic
review will serve as a valuable resource for both seasoned
researchers and newcomers alike, aiding in the development
of a comprehensive understanding of the field and fostering
inspiration for state-of-the-art innovations.

2. Methodology
2.1. Literature search strategy

To identify relevant literature on wearable systems for continu-
ous human joint angle estimation with textile-sensing networks,
we conducted a comprehensive search across four databases:
IEEExplore, PubMed, Scopus, and Web of Science. Initially, we
fully searched the studies published between January 2016 and
July 2022. During the peer-review process, we conducted a
second round of literature search to update our findings with
publications released between August 2022 and August 2023.
Both rounds included journal articles and peer-reviewed con-
ference papers that were written in English. The search strategy
involved following keywords: (“joint” OR “motion” OR
“motor” OR “movement” OR “pose” OR “posture”
OR “gesture”) AND (“monitor*” OR “sens*” OR “estimat*”
OR “measur™” OR “detect*” OR “track®*” OR “captur®”) AND
(“textile” OR “fabric” OR “e-textiles” OR “yarn” OR “fabric-
based” OR “textile-based”) AND ("wearable”).

2.2. Identifying eligible studies

We followed the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) guidelines (Page
et al., 2021) to systematically select eligible papers in both
rounds. First, we removed duplicates after implementing the
comprehensive search strategy. Then, two reviewers (RZ and
QW) independently screened the titles and abstracts of the
remaining articles. Subsequently, the same two reviewers
independently read the full text to assess whether the papers
met the inclusion and exclusion criteria. In the case of dif-
fering opinions, the reviewers reached agreements with other
authors through discussion. If one research team published
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Figure 1. PRISMA flowchart of the results from literature research.

several articles related to the same wearable system, we
included the most relevant one based on the inclusion crite-
ria. The PRISMA flowchart illustrating the selection process
is shown in Figure 1. The detailed inclusion and exclusion
criteria are presented as follows.

2.2.1. Inclusion criteria

e The study concerned a wearable system equipping with a
textile-sensing network.

e The textile-sensing network included rational data proc-
essing methods or algorithms that could predict continu-
ous human joint angles from the time-series signals.

e The study reported monitoring performance, i.e., moni-
toring accuracy.

e The study was published between January 2016 and
August 2023, and written in English.

2.2.2. Exclusion criteria

e Reviews or books.

o The systems were designed for robots rather than humans.

e The system was not based on textile strain sensors.

e The system was not capable of outputting continuous
joint angles from textile sensing signals.

2.3. Data extraction with a new framework

After identifying eligible studies, we further classified and
inventoried them with a novel framework. As shown in

Figure 2, the framework considered both technical and con-
textual aspects, including crucial elements required for the
development of a functional and usable wearable system
with a textile-sensing network. The detailed instructions are
provided below:

1. Technical matters: Once the specific joint to be moni-
tored has been identified, the focus shifts to the con-
struction of an effective textile-sensing network.
Within the scope of this review, we deem three key
aspects as critical for the development of such a net-
work: i) textile strain sensors, which involves selecting
the appropriate type of textile sensor as well as evalu-
ating its sensing performance; ii) sensor placement,
which concerns the strategic positioning of sensors
around the target joint, especially in cases where mul-
tiple sensors are required to capture complex joint
movements; and iii) algorithms, entailing the develop-
ment of computational methods for real-time predic-
tion of joint angles based on time-series data from
the textile sensors. Upon the establishment of the net-
work, a technical evaluation should be conducted to
validate the system’s reliability and accuracy in con-
tinuous human motion monitoring.

2. Contextual matters: In addition to the technical aspects,
it is crucial to contemplate how this technology can be
seamlessly integrated into clinical or real-world settings.
One strategy involves embedding textile-sensing net-
works within wearable systems. This integration calls
for further design considerations, such as application
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Implementation of wearable systems with textile-sensing networks

Technical matters for textile-sensing networks

sensor placement ®

//_\

® _ algorithms
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Contextual matters for wearable systems
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application scenarios

usability/clinical evaluation

Figure 2. A framework centered on the implementation of wearable systems for joint angles estimation from a Human-Computer Interaction standpoint.

scenarios, which refer to the specific contexts where the
technology will be deployed; target user conditions,
which pertain to the unique characteristics or needs of
users within those scenarios; and wearability, which
assesses whether the wearable systems equipped with
textile-sensing networks meet the wearability criteria for
a given context. These multifaceted considerations
necessitate usability or clinical evaluations to confirm
the system’s applicability for its intended use.

We applied this framework to analyze the eligible studies
with both technical and contextual considerations. The find-
ings were presented in the next section.

3. Findings

The literature search yielded a total of 2684 articles, with
additional four articles included from citation searching.
Following PRISMA guidelines, the full texts of 300 articles
were retrieved. Ultimately, 24 papers that satisfied the prede-
termined inclusion criteria were selected for review and their
key information was summarized in Table 1. To make it
easier to track these articles in the following figures, we
have numbered them from 1 to 24, which also can be found
in Table 1.

3.1. Technical matters for textile-sensing networks
development

Addressing particular technical challenges is essential for
furthering the development of textile-sensing networks.
However, prior to discussing these technical elements, the
primary prerequisite is to identify the specific joint angles
that need monitoring. Therefore, in this section, we first
catalog the target joint angles covered in the studies that
met our inclusion criteria. Subsequently, we present detailed
findings on three critical aspects of textile-sensing network
development: textile strain sensors, sensor placement, and
algorithms. Lastly, we provide information regarding the
technical evaluations conducted, with a special focus on the
monitoring accuracy reported in these studies.

3.1.1. Target joint angles

The 24 included articles spanned a diverse range of joint
angles, encompassing various anatomical regions as detailed
in Figure 3. These studies examined joints such as the hip
(Gholami et al, 2019; Tavassolian et al., 2020), knee
(Di Tocco, Carnevale, Bravi, et al, 2021; Di Tocco,
Carnevale, Presti, et al., 2021; Gholami et al., 2018; Gholami
et al, 2019; Grassi et al., 2017; Gupta et al,, 2021; S. Hu
et al.,, 2019; Poomsalood et al., 2019; Ru et al., 2023; Totaro



Table 1. Summary chart of key information.

Placement and

Sensor placement

Evaluation and

Number References Motion angles Types factor (GF) Hysterisis Linearity numbers strategies Algorithms Accuracy Substrate Method participants number Scenarios
1 Mokhlespour Esfahani Trunk Re 6 8% Error = 2% Back (N=12) Deformation MLP <>2.7 Tight shirt - TE (N=3) -
et al.,(2017) measurement,
and previous work
2 Totaro et al.(2017) Knee, ankle Ca - - - Knee (N=3) Ankle Anatomy Multiple linear <«<>4 Knee brace Adhesive TE, UE (N=2) -
(N=5) regression Ankle brace
3 Grassi et al.(2017) Knee Re 2.56 14.80% 0.998 Knee (N=1) Anatomy Simple linear models <>8.9 Knee brace Fixed by hooks TE (with a robot), UE -
(n=1)
4 Esfahani & Nussbaum,(2018)  Shoulder, trunk Re 6 8% Error = 2% Lower back (N=5) Previous work MLP <>1.3" (trunk) <>9.4° Undershirt - TE (N=16) -
Shoulder (shoulder)
(N=6)
5 Maselli et al.(2018) Cervical Re 256 14.80%  0.998 Neck (N=2) Anatomy Simple linear models <>1231 (fl) <>6.04' (On Skin) (On skin) TE (N=5) -
(Ib) <>10.16" (r0)
6 Gholami et al.,(2018) Knee Re - - - Knee (N=1) - Random forest + MLP <>6.97" (inter) <>3.02" Tight trousers ~ Sewing TE (N=6) -
(intra)
7 R. Liu et al.,(2019) Elbow Re ~4.5 Quantified Quantified Elbow (N=4) Anatomy Simple linear models <>9.69 Sleeve Adhesive and TE, UE (N=10) -
sewing
8 S. Hu et al.,(2019) Knee Re - - - Knee (N=1) - Simple linear models 0.91r (On Skin) (On skin) TE, UE (N=1) -
9 Rezaei et al.(2019) Trunk Re 5 10% Quantified Back (N=18) Previous work Random forest <>4.26 (fl) «>3.53" (Ib) Sleeveless shirt Sewing TE (N=12) -
<>3.44" (ro)
10 Gholami et al.,(2019) Hip, knee, ankle Re 5 10% Quantified Pelvis (N=4) Knee Deformation CNN + MLP <>6.38 (inter) <>2.20° Tight trousers ~ Sewing TE (N=10) Sports (running)
N=2) measurement (intra)
Ankle (N=3)
1 Poomsalood et al.,(2019) Knee Ca - - - Knee (N=3) - Multiple linear <><5 (7/9) (On Skin) (On skin) TE (N=9) -
regression
12 Y. Jin et al.,(2020) Shoudler Ca 1.23 1.50% 0.999 Shoulder (N=28) Anatomy, sensing test Gradient boosting model <>4.5 Tight shirt Sewing TEN=1) -
based on decision
trees
13 Vu et al.,(2020) Lumbar Ca - - - Around the lumbar Previous study PCA + multiple linear <>9 (fllb) «>13.7" (ro) (On Skin) (On skin) TE(N=12) Astronauts
(N=10) regression (spacesuit)
14 Tavassolian et al.,(2020) Hip In 0.055 - 0.985 Around the Pelvis Deformation Random forest <>1.63 (sa) <>1.08 (fr) Sport Shorts Sewing TE(N=12) Sports (running)
(N=4) measurement <><1.15 (tr)
15 Lau & Soh,(2020) Elbow Re - - - Elbow (N=1) Anatomy and Binary linear models 8.01<«> -10.72<>" - - TE on testbed -
kinematics
of the RPR Chain
16 Watson et al.,(2020) Knee Re - - - Knee (N=1) - Binary linear models <>3.6 (average) Knee brace Adhesive & Sewing TE (N =6) Rehabilitation
17 Zhu et al.(2021) Elbow Re - - - Elbow (N=6) - MLP with customised <>8.78 Elbowpad Sewing TE (N=10) -
loss function
18 Di Tocco, Carnevale, Bravi, Knee Re 0.28 26.64% Error = 23.9% Knee (N=1) Deformation Binary linear models <>18.82" Knee guard Fixed by Metal TE (N=5) Rehabilitation
et al. (2021); Di Tocco, measurement Snaps
Carnevale, Presti, et al.
(2021)
19 Di Tocco, Carnevale, Bravi, Elbow Re - - - Elbow (N=1) - Binary linear models <>75 Elbow guard Fixed by buttons  TE (N=2) -
etal.
(2021); Di Tocco,
Carnevale, Presti, et al.
(2021)
20 Gupta et al.,(2021) Knee Re - - - Knee (N=1) Anatomy Sensing test Simple linear models <>16.46 (fl) Knee brace Adhesive & Sewing TE (n=6) Rehabilitation
21 Robinson et al.,(2022) Shoulder, Elbow Re - - - Elbow (N=1) Anatomy CNN + MLP <>9.7" (elbow) <>2.6° Tight shirt - TE Robotics
Shoulder (N=4) (shoulder)
22 Ru et al.(2023) Knee, elbow Re - - 0.9835 ~0.9907 Knee (N=1) Elbow - MLP <>2.68 (knee) <>3.04’ Knee and - TE (n=1) -
N=1) (elbow) elbow pads
23 Zou et al.(2023) Knee Re - - - Knee (N=3) Anatomy Simple linear models <><6.15 (fl) Knee brace - TE (with a Rehabilitation
prosthetic limb) Robotics
24 X. Chen et al.,(2022) Elbow Ca - - 0.999 Elbow (N=6) Sensing performance LSTM + MLP <>9.82° (single user) Elbow pad Adhesive & TE (n=12) UE (n=9) Rehabilitation
<>10.98 hot pressed Athletes
(multiple motion types)
<>11.81" (multiple
users)
footnote:

1. Column Sensor Types: Re: Resistive textile sensors, Ca: Capacitive textile sensors, In: Inductive texitle sensors.
2. Column Algorithms: MLP: multilayer perceptron; CNN: convolution neural network; PCA: Principal component analysis.
3. Column Accuracy: fl: flexion/extension, Ib: lateral bending, ro: rotation, sa: sagittal plane, fr: frontal plane, tr: transverse plane.

4. Column Evaluation and Participants number: TE: technical evaluation; UE: usability evaluation.
5. “-" means “Not mentioned.”
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Figure 3. The illustration of monitored joints among 24 eligible studies.

et al., 2017; Watson et al., 2020; Zou et al., 2023), ankle
(Gholami et al., 2019; Totaro et al., 2017), neck (Maselli
et al.,, 2018), shoulder (Esfahani & Nussbaum, 2018; Y. Jin
et al., 2020; Robinson et al., 2022), elbow(X. Chen et al.,
2022; Di Tocco, Carnevale, Bravi, et al, 2021; Di Tocco,
Carnevale, Presti, et al., 2021; Lau & Soh, 2020; R. Liu et al,,
2019; Robinson et al., 2022; Ru et al, 2023; Zhu et al,
2021), and trunk (Esfahani & Nussbaum, 2018;
Mokhlespour Esfahani et al,, 2017; Rezaei et al., 2019; Vu
et al., 2020).

A significant focus was placed on lower body kinetics,
with 11 of the 24 studies honing in on this area (Di Tocco,
Carnevale, Bravi, et al, 2021; Di Tocco, Carnevale, Presti,
et al., 2021; Gholami et al,, 2018, 2019; Gupta et al,, 2021; S.
Hu et al., 2019; Poomsalood et al,, 2019; Ru et al., 2023;
Tavassolian et al., 2020; Totaro et al., 2017; Watson et al.,
2020; Zou et al, 2023). Of these, eight dedicated their
research to estimating knee joint angles in the sagittal plane
(Di Tocco, Carnevale, Bravi, et al, 2021; Di Tocco,
Carnevale, Presti, et al., 2021; Gholami et al., 2018, 2019;
Gupta et al., 2021; S. Hu et al., 2019; Poomsalood et al.,
2019; Ru et al, 2023; Totaro et al., 2017; Watson et al.,
2020; Zou et al., 2023). It should be noted that three of these
studies aimed for multi-joint monitoring; for example, in
the study by Totaro et al. (2017), a brace with five textile
strain sensors was developed to measure knee joint angles,
as well as ankle joint angles in three planes (sagittal, front,
and transverse plane). The smart legging proposed by
Gholami et al. (2019) was configured to monitor hip, knee,
and ankle joint angles concurrently, while the system pro-
posed by X. Chen et al. (2022) was engineered to estimate
both elbow and knee angles.

On the other hand, 12 studies centered on upper body
joint angles (X. Chen et al, 2022; Di Tocco, Carnevale,
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021;
Esfahani & Nussbaum, 2018; Y. Jin et al., 2020; R. Liu et al.,
2019; Maselli et al., 2018; Mokhlespour Esfahani et al., 2017;
Rezaei et al., 2019; Robinson et al., 2022; Ru et al., 2023; Vu
et al,, 2020; Zhu et al., 2021). The elbows were often the

Neck (n=1, [5])
Shoulder (n=3, [4], [12, [21])

Trunk (n=4,[1], [4], [9],[23])
Elbow (n=7,[7],[15], [17], [19], [21], [22], [24])

Hip (n=2, [101,[14])

Knee (n=11,[2],[3],[61,[81,[201,[11],[16],[18],[20],[22],[23])

Ankle (n=2, [2],[10])

focus, examined in a singular plane(X. Chen et al,, 2022; Di
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale,
Presti, et al., 2021; R. Liu et al., 2019; Robinson et al., 2022;
Ru et al,, 2023; Zhu et al, 2021), as were complex multi-
plane neck angles (Maselli et al., 2018) and intricate shoul-
der movements (Esfahani & Nussbaum, 2018; Y. Jin et al,,
2020; Robinson et al., 2022). Additionally, four articles
delved into three-degree-of-freedom monitoring of the trunk
or lumbar region (Esfahani & Nussbaum, 2018;
Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019; Vu
et al., 2020), which involved observing flexion, lateral bend-
ing, and rotational angles.

Worth noting is that X. Chen et al. (2022); Grassi et al.
(2017); Lau and Soh (2020) offered more general solutions,
applicable to various body parts. The systems in these stud-
ies are capable to measure flexion and extension in human
movements, such as those involving the knee and elbow,
rather than focusing on a single specific joint.

Methodologies for defining the monitored angles varied
among the studies. Simple anatomical models were often
used for joints with a single degree of freedom, like the
knee, elbow, and neck. In several instances, knee and elbow
joints were considered pulley systems (X. Chen et al., 2022;
Grassi et al,, 2017; Gupta et al., 2021; S. Hu et al.,, 2019; Lau
& Soh, 2020; Robinson et al.,, 2022; Ru et al., 2023; Watson
et al., 2020; Zou et al., 2023). The neck joint in study by
Maselli et al. (2018), for instance, was treated as a spherical
joint allowing for various types of movement. Alternatively,
nine studies opted for vector-based or geometric relation-
ships using reflective markers affixed to anatomical positions
(Di Tocco, Carnevale, Bravi, et al, 2021; Di Tocco,
Carnevale, Presti, et al,, 2021; Gholami et al., 2018, 2019;
Poomsalood et al, 2019; Rezaei et al, 2019; Tavassolian
et al., 2020; Totaro et al., 2017; Zhu et al., 2021). Some, like
Y. Jin et al. (2020), Mokhlespour Esfahani et al. (2017), and
Vu et al. (2020), adhered to coordinate systems recom-
mended by the International Society of Biomechanics
(ISB)(Wu et al., 2002, 2005) for complex motions. However,
the study by Esfahani and Nussbaum (2018) lacked explicit



definitions or references for the monitoring of multi-degree-
of-freedom shoulder and low-back movements.

3.1.2. Textile strain sensors

The selection of textile sensors was the first consideration
among the three matters of developing a textile-sensing net-
work. In the context of continuous joint angle monitoring,
textile strain sensors were applied in all included cases. The
general working principle of textile strain sensors is that the
sensing parameters would change while stretching caused by
skin deformation or joint movement, thus the sensors are
often designed as long stripes to accommodate the direction
of stretching.

Although the fundamental working principle mentioned
above applies to all strain sensors, the characteristics and
performance of different sensors vary much according to
different sensing principles (J. Wang et al., 2020), such as
resistive effect, capacitive effect, etc. Among the 24 eligible
studies, 3 different sensing principles were found, which
brought three types of textile strain sensors:

e Resistive textile strain sensor, n=18 (Di Tocco,
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti,
et al., 2021; Esfahani & Nussbaum, 2018; Gholami et al.,
2018, 2019; Grassi et al., 2017; Gupta et al., 2021; S. Hu
et al., 2019; Lau & Soh, 2020; R. Liu et al., 2019; Maselli
et al, 2018; Mokhlespour Esfahani et al., 2017; Rezaei
et al, 2019; Robinson et al., 2022; Ru et al, 2023;
Watson et al., 2020; Zhu et al., 2021; Zou et al., 2023).

e Capacitive textile strain sensor, n#=5 (X. Chen et al.,
2022; Y. Jin et al., 2020; Poomsalood et al., 2019; Totaro
et al., 2017; Vu et al.,, 2020).

e Inductive textile strain sensor, n=1 (Tavassolian et al.,
2020).

To further analysis, the different performance among
these sensors, three key parameters that were always used
for describing sensors’ performance (Homayounfar &
Andrew, 2020; Nesser & Lubineau, 2021), namely sensitivity,
hysteresis, and linearity, were paid attention in this review
as follows:

e Sensitivity indicates the accuracy and efficiency of the
sensor and is usually evaluated by gauge factor (GF),
which is given by GF = < >AR/Rye, where <>AR
denotes the resistance variation (i.e., the difference
between R as the resistance value under deformation and
Ry as the initial value), and ¢ is the applied strain
(Homayounfar & Andrew, 2020). Usually, the higher GF
denotes higher sensitivity.

e Hysteresis reflects that there is no unique correspondence
between the observed sensing signal readings and stretch-
ing length (Schmool & Markd, 2018). Typically, different
sensing signal value curves will be presented under load-
ing and unloading, while higher hysteresis means larger
differences between two curves.
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e Linearity, which always indicates the linear working
range of textile strain sensor, measures the stability of
the signal over an application range and is determined
by the percentage of deviation of the output signal from
the linear regression line (Homayounfar & Andrew,
2020), and higher linearity implies a more predictable
relation between strain and readings.

Resistive textile strain sensors are the most widely used
sensors for measuring human movement. Most of them
exhibit excellence in sensitivity (Homayounfar & Andrew,
2020; X. Wang et al,, 2022), and are worth considering for
studies demand high sensitivity and large strain range along
with large deformation. Among three types of sensors,
resistive textile strain sensors were widely used in 18 of the
eligible studies, measuring both one-degree-of-freedom and
multi-degree-of-freedom joint angles, including trunk
(Esfahani & Nussbaum, 2018; Mokhlespour Esfahani et al.,
2017; Rezaei et al, 2019) hip (Gholami et al., 2019), knee
(Di Tocco, Carnevale, Bravi, et al, 2021; Di Tocco,
Carnevale, Presti, et al, 2021; Gholami et al., 2018, 2019;
Grassi et al,, 2017; Gupta et al., 2021; S. Hu et al., 2019;
Robinson et al., 2022; Ru et al., 2023; Watson et al., 2020;
Zou et al., 2023), ankle (Gholami et al., 2019), shoulder
(Esfahani & Nussbaum, 2018; Robinson et al., 2022), neck
(Maselli et al., 2018), and elbow (Di Tocco, Carnevale,
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021;
Lau & Soh, 2020; R. Liu et al., 2019; Robinson et al., 2022;
Ru et al,, 2023; Zhu et al,, 2021). These sensors work on the
resistive effect (J. Wang et al., 2020), where an external force
deforms the strain sensors and changes the resistance of the
conductive textile, thus measuring human motion by sensing
signals variation. While this principle provides textile strain
sensors with high sensitivity compared to capacitive ones, it
also leads to considerable hysteresis (X. Wang et al., 2022).
For instance, among the 15 studies with resistive strain sen-
sors, eight of them reported GF values, with seven of them
ranging from 2.56 to 6 (Esfahani & Nussbaum, 2018;
Gholami et al., 2019; Grassi et al., 2017; R. Liu et al., 2019;
Maselli et al., 2018; Mokhlespour Esfahani et al., 2017;
Rezaei et al,, 2019), and except one study by Di Tocco,
Carnevale, Bravi, et al. (2021); Di Tocco, Carnevale, Presti,
et al. (2021) with relatively low GF of 0.28. However, the
hysteresis tended to be obvious in these studies, ranging
from 8% to 14.8% (Esfahani & Nussbaum, 2018; Gholami
et al., 2019; Grassi et al, 2017; Maselli et al, 2018;
Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019), and
even the hysteresis in study by Di Tocco, Carnevale, Bravi,
et al. (2021); Di Tocco, Carnevale, Presti, et al. (2021)
reached 26.64%. Notably, in the work from R. Liu et al
(2019), to avoid the deviation caused by hysteresis, textile
pressure sensors were employed to assist in the determin-
ation of the elbow motion state. In terms of linearity, most
of the studies reported excellent performance although only
five studies reported it quantitatively (Di Tocco, Carnevale,
Bravi, et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021;
Esfahani & Nussbaum, 2018; Grassi et al, 2017; Maselli
et al., 2018; Mokhlespour Esfahani et al., 2017), with the
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highest correlation coefficient being <>R* = 0.998 (Grassi
et al., 2017; Maselli et al., 2018).

As for capacitive strain sensors, they generally have rela-
tively low sensitivity, while they offer high linearity and neg-
ligible hysteresis (S. Kim et al., 2017). Therefore, capacitive
sensors are preferable considered for scenarios requiring
high stability. Among 24 studies, five employed capacitive
textile strain sensors to monitor knee (Poomsalood et al.,
2019; Totaro et al., 2017), ankle (Totaro et al., 2017),
shoulder(Y. Jin et al., 2020), trunk (Vu et al, 2020), or
elbow (X. Chen et al., 2022). These sensors operate similarly
to conventional capacitors, using a three-layer sandwich
structure (J. Wang et al., 2020). Specifically, they use con-
ductive fabrics as electrodes and elastic insulating materials
as the medium. When an external force is applied, it causes
a change in capacitance due to the distance or parallel area
of the capacitor plates, the distance between the two textile
electrodes, and the relative permittivity of the capacitive
medium changes. Consequently, joint angles could be moni-
tored by tracking capacitance variation. In general, capaci-
tive sensors achieve lower hysteresis than resistive strain
sensors (X. Wang et al, 2022). For example, the hysteresis
reported in study by Y. Jin et al. (2020) was only 1.5%,
which was the lowest among the included studies. And cap-
acitive sensors are also reckoned to excel at linearity
(Homayounfar & Andrew, 2020). The two studies(Y. Jin
et al., 2020; Zou et al., 2023) reporting linearity among five
studies both achieved a superior correlation coefficient of
<>R* =0.999. However, compared with resistive sensors,
capacitive strain sensors generally tend to show lower sensi-
tivity (X. Wang et al, 2022). The study by Y. Jin et al
(2020) reported their GF of 1.23, which was significantly
lower than most resistive sensors among the eligible studies.

Inductive textile strain sensors were used in only one
study that aimed at hip joint angle monitoring (Tavassolian
et al., 2020). While these sensors have low sensitivity, with a
GF of only 0.055, which is far from the other types of sen-
sor. They operate on the principles of electromagnetic
induction, and involve copper wire coiled around an elastic
thread. The resulting copper-coiled elastic thread was inte-
grated into sports shorts to monitor hip angles. External
forces cause variations in the inductance and self-inductance
coefficients, which in turn leads to changes in voltage and
current output. These changes enable the determination of
joint angles. But note that this type of sensor exhibits
remarkable performance in terms of relaxation, as it shows
no relaxation during the experiment, which might be benefi-
cial for ultra-long-term use.

3.1.3. Sensor placement

Designing a textile-sensing network for continuous joint
angle monitoring necessitates careful consideration of the
number, location, and orientation of textile sensors. These
variables significantly influence the effectiveness of the tex-
tile-sensing network (Mattmann et al., 2007; Mokhlespour
Esfahani et al., 2017). To systematically catalog and illustrate
the sensor placement formulas employed across 24 studies,
we present a unified schematic in Figure 4. This schematic

encompasses the number, location, and approximate orienta-
tion of the textile sensors, as well as the strategies guiding
their placement.

The number of textile strain sensors deployed in such
networks is contingent upon the complexity of the move-
ment being monitored. Generally, movements with higher
degrees of freedom require a greater number of sensors for
accurate measurement. For instance, monitoring a three-
degree-of-freedom ankle joint is more complicated than
monitoring a single-degree-of-freedom knee joint, thus
necessitating additional sensors. Of the eligible studies, ten
utilized a single textile strain sensor for estimating flexion
and extension angles around the knee or elbow joint (Di
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale,
Presti, et al., 2021; Gholami et al., 2018; Grassi et al., 2017;
Gupta et al, 2021; S. Hu et al, 2019; Lau & Soh, 2020;
Robinson et al., 2022; Ru et al., 2023; Watson et al., 2020).
Notably, although three textile sensors were integrated into
the knee brace in the study by Gupta et al. (2021), only one
sensor’s data was utilized for angle estimation. Conversely,
11 other studies employed between 2 and 9 textile strain
sensors for single-planar and multi-planar joint angle esti-
mations (X. Chen et al., 2022; Gholami et al.,, 2019; Y. Jin
et al, 2020; R. Liu et al, 2019; Maselli et al, 2018;
Poomsalood et al.,, 2019; Robinson et al., 2022; Tavassolian
et al., 2020; Totaro et al., 2017; Zhu et al,, 2021; Zou et al,,
2023). A notable case among them, is the elbow pad pro-
posed by X. Chen et al. (2022) that equipped with six sen-
sors for algorithm and wearability concerns. In the studies
aimed at monitoring trunk angles (Esfahani & Nussbaum,
2018; Mokhlespour Esfahani et al., 2017; Rezaei et al., 2019;
Vu et al, 2020), 12, 11, 18, and 10 textile strain sensors
were allocated respectively to monitor the trunk angles with
flexion, lateral bending, and rotation.

Regarding sensor location and orientation, various strat-
egies have been adopted. The overarching objective is to
position the textile sensors in areas experiencing maximum
skin deformation during movement. This ensures that the
sensors operate within their effective working ranges.
Among the 24 studies, seven studies did not specify their
methods (Di Tocco, Carnevale, Bravi, et al., 2021; Di Tocco,
Carnevale, Presti, et al., 2021; Gholami et al., 2018; S. Hu
et al,, 2019; Poomsalood et al., 2019; Ru et al., 2023; Watson
et al, 2020; Zhu et al, 2021), which indicated that they
decided the sensor placement by empirical anatomy know-
ledge. These studies generally focused on simple, single-
degree-of-freedom joints like the elbow and knee. In such
cases, relying on empirical anatomical knowledge to identify
maximum deformation areas was deemed acceptable.

While, the other 14 studies clearly explained the sensor
placement strategies, including four categories as shown as
follows:

e Anatomy analysis (X. Chen et al, 2022; Grassi et al,
2017; Gupta et al., 2021; Y. Jin et al., 2020; Lau & Soh,
2020; R. Liu et al.,, 2019; Maselli et al., 2018; Robinson
et al., 2022; Totaro et al., 2017; Zou et al., 2023).
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Figure 4. The schematic textile strain sensor placement strategies of the 24 eligible studies.

e Optical deformation measurements (Di Tocco, Carnevale,
Bravi, et al, 2021; Di Tocco, Carnevale, Presti, et al.,
2021; Gholami et al., 2019; Mokhlespour Esfahani et al.,
2017; Tavassolian et al., 2020).

e Based on previous studies that measured deformation
(Esfahani & Nussbaum, 2018; Rezaei et al., 2019; Vu
et al., 2020).

e Sensor performance tests (X. Chen et al., 2022; Gupta
et al,, 2021; Y. Jin et al., 2020; Lau & Soh, 2020; Rezaei
et al., 2019).

Locating textile strain sensors based on anatomical ana-
lysis is a straightforward approach. For example, the authors

in one study elucidated maximum deformation areas around
the knee joint by leveraging anatomical knowledge (Totaro
et al., 2017). Others determined sensor locations through the
analysis of anatomical models’ rotational axes (R. Liu et al,,
2019; Maselli et al, 2018). In the study by Y. Jin et al.
(2020), capacitive textile strain sensors were placed vertically
along non-extension lines according to anatomy first, and
capacitance changes tests were performed by iteration of
sensor locations and orientations to optimize the sensor
placement.

Deformation measurement is considered the most reliable
strategy compared to others (Mokhlespour Esfahani et al.,
2017), because it provides quantified evidence to determine
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the sensor placement. For example, the sensors’ deformation
study on the upper trunk by Mattmann et al. (2008) was ref-
erenced by Esfahani and Nussbaum (2018) and Rezaei et al.
(2019). This method was usually applied in the textile-
sensing networks that aimed at monitoring multi-degree-of-
freedom human motion, gaining higher data collection
accuracy, or using fewer sensors. In the studies by Di Tocco,
Carnevale, Bravi, et al. (2021); Di Tocco, Carnevale, Presti,
et al. (2021); Gholami et al. (2019); Mokhlespour Esfahani
et al. (2017), it was exhaustively described how this method
was carried out: typically, the fabric deformation was meas-
ured by inviting subjects to wear tight-fitting garments with
reflective markers and perform preset actions in the optical
motion capture lab environment, and the set of marker
points with largest deformation would be selected as the
references for sensors’ location. Based on this strategy,
deformation was measured around the pelvis (Gholami
et al., 2019; Tavassolian et al, 2020), the knee joint (Di
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale,
Presti, et al., 2021), and the upper trunk (Mokhlespour
Esfahani et al, 2017). Although the study by Mokhlespour
Esfahani et al. (2017) did not use a continuous motion
tracking system, sensor placement was determined by taking
photos of the 32 movements made by one subject wearing a
tight garment with 90 reflective markers. The larger deform-
ation area was selected for sensor placement through quali-
tative analysis of these photos. Vu et al. (2020) located the
sensors by drawing on the layout experience from
Mokhlespour Esfahani et al. (2017) due to its higher
credibility.

3.1.4. Algorithms
With the guidance from the proposed framework, the third
technical matter concerns with the construction of algo-
rithms capable of estimating continuous joint angles with
time-series textile sensing data. To accomplish this, raw tex-
tile sensing data undergo at least three distinct stages of
processing in a conventional data pipeline. First, raw textile
data are collected and pre-processed into a format suitable
for the algorithm. Typically, raw data from textile sensors
are usually in an arbitrary range and also a serial form, and
the conventional operation will be to normalize the sensor
readings range and save them in matrices. Then, the format-
ted data, like a matrix, will be transferred to a feature
extraction algorithm, which can extract relevant features for
the target task. When dealing with a single textile sensor,
researchers usually extract features from the temporal pat-
tern change. Finally, these features will be fed into an infer-
ence model that can produce the final results of target task.
For angle estimation, the inference model can identify the
specific patterns extracted by the feature extractor and assess
their relevance to the moving angles. Based on this assess-
ment, the model can estimate the moving angle accordingly.
Within this pipeline, two key elements have a significant
impact on algorithm performance and are worth consider-
ing: 1) data fusion between each step of multiple textile sen-
sors (if applicable) that refers to the method of combination
for data from textile sensors in textile-sensing networks, and

2) the inference models that indicates the mathematical
model preset to infer the angle from the processed sensor
data.

In general, according to different stages to apply fusion
operations, data fusion of multiple sensors can be performed
at three distinct levels: data-level, feature-level, and decision-
level (Gravina et al., 2017; Qiu et al., 2022). Among the eli-
gible studies, eight studies employed only a single sensor,
and also seldom studies in the rest employed data fusion
techniques, with only five studies at data-level fusion
(Gholami et al.,, 2018, 2019; Ru et al., 2023; Tavassolian
et al, 2020; Vu et al, 2020), one study at feature-level
(Gholami et al, 2019), and one study at decision level
(Totaro et al., 2017).

In data-level, fusion operations integrate data from mul-
tiple sensors into a single data set before feature extraction,
mainly including denoising, feature pre-extraction, data clas-
sification, and data compression. Some eligible studies
applied data-level fusion techniques to enhance the perform-
ance of their models. For example, Vu et al. (2020) used
principal component analysis (PCA) to reduce the data from
ten sensors to five principal dimensions, and then built a
regression model based on the reduced data to estimate
lumbar angles. Ru et al. (2023) integrated five one-dimen-
sional sensor signal series into a two-dimensional matrix.
This matrix was subsequently processed by a 2D convolu-
tional neural network (CNN), facilitating the exploration of
inter-series relationships. Tavassolian et al. (2020) performed
arithmetic operations on each pair of sensor signal values,
such as addition, subtraction, division, and multiplication,
and reported better results on hip angles monitoring than
using the original values. Gholami et al. (2019) calculated
the first and second derivatives of the raw signal from nine
textile sensors, and used them along with the raw signal to
train their model. Unlike the other studies that fused data
from multiple sensors or sources, Gholami et al. (2018)
aimed at knee joint angles and applied a broader sense of
data-level fusion by extracting features from one sensor sig-
nal in different time segments, resulting in 788 features that
were fed to their model. These studies demonstrated that
such data-level fusion in time dimension improved their
model compared to using the raw signal alone.

At feature-level, fusion operations combine features
extracted from multiple data sources before sending them to
an inference model. Gholami et al. (2019) fused features
extracted by CNN to achieve their goal. They firstly
employed data-level fusion before feature-level fusion as
aforementioned. Specifically, they first combined and pre-
processed data from nine sensors and formed them as a
matrix of shape (60 x 27), which then was fed into four
layers of 2D CNN, eventually extracting 100 features of
shape (26 x 27). These features were subsequently flattened
into one dimension and sent into a multilayer perceptron
(MLP) for angle estimation of hip, knee, and ankle.

At decision-level, fusion operations synthesize the results
produced by the inference model on individual sensors to
make a further decision. R. Liu et al. (2019) integrated a
pressure sensor into their textile, which can detect the



pressure generated by joint movement. This enables their
textile to differentiate two motion states (loading, unloading)
and a motionless state, consequently deciding the model
used for final angle estimation.

Besides data-fusion, inference model employed also mat-
ters. Based on their methods of inference, these systems can
be generally divided into two categories: deduction and
induction. Specifically, deductive approaches involve leverag-
ing known knowledge, such as geometry, to build a model
for predicting joint angles based on sensing data. Inductive
approaches, on the other hand, indicate adapting models to
data collected from sensors without making any assumptions
on human’s movement. In another word, models need to
discover the hidden relationship between sensor data and
human’s movement by themselves.

Among the eligible studies, deductive methods mainly
relied on geometry principles and deformation of sensors,
such as elongation or strain, to estimate joint angles (Grassi
et al, 2017; Gupta et al., 2021; S. Hu et al, 2019; R. Liu
et al,, 2019; Maselli et al.,, 2018) which was related to raw
sensor characteristics such as capacitance or resistance val-
ues. For example, S. Hu et al. (2019) assumed that the resist-
ance change of the sensor was proportional to its change in
length, and thus the change in the knee joint angle could be
determined by multiplying the resistance change by the sen-
sor sensitivity and dividing it by the radius of the knee joint.
Additionally, Maselli et al. (2018) calculated the joint angle
by dividing the elongation of each pair of sensors by the
radius of the neck joint. In another study, R. Liu et al
(2019) first analyzed the anatomy of elbow joints to identify
the geometric relationship between the deformation and the
rotation of joint bones. They found that the joint rotation
angle was linearly related to the difference between stretch
lengths sensed by the dual strain fabric sensors.

In comparison, inductive methods have been used in a
more diverse range of studies (X. Chen et al, 2022; Di
Tocco, Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale,
Presti, et al., 2021; Esfahani & Nussbaum, 2018; Gholami
et al., 2018, 2019; Y. Jin et al, 2020; Lau & Soh, 2020;
Mokhlespour Esfahani et al., 2017; Poomsalood et al., 2019;
Rezaei et al., 2019; Robinson et al., 2022; Ru et al., 2023;
Tavassolian et al., 2020; Totaro et al.,, 2017; Vu et al., 2020;
Watson et al., 2020; Zhu et al, 2021; Zou et al., 2023).
These methods can be further categorized into two classes:
simple linear regression and advanced machine learning.

Eight studies (Di Tocco, Carnevale, Bravi, et al., 2021; Di
Tocco, Carnevale, Presti, et al, 2021; Lau & Soh, 2020;
Poomsalood et al., 2019; Totaro et al., 2017; Vu et al., 2020;
Watson et al.,, 2020; Zou et al., 2023) utilized simple linear
regression to fit data pairs of sensor data and ground-truth
joint angles, among which, the similar calculation patterns
were shown. Take the study by Poomsalood et al. (2019) as
an example, linear algebra techniques were used to deter-
mine the equation coefficient between sensor output signals
and quaternions obtained from an OptiTrack system.

Eleven studies (X. Chen et al, 2022; Esfahani &
Nussbaum, 2018; Gholami et al., 2018, 2019; Gupta et al.,
2021; Y. Jin et al., 2020; Mokhlespour Esfahani et al., 2017;
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Rezaei et al., 2019; Robinson et al., 2022; Ru et al, 2023;
Tavassolian et al, 2020; Zhu et al, 2021) introduced
advanced machine learning algorithms into their work,
including random forest and neural networks (NNs). For
instance, Esfahani and Nussbaum (2018) used a MLP with
one hidden layer containing 60 or 200 neurons to explore
the relationship between raw sensor signals and angles of
the low-back and shoulder. In another study (Rezaei et al,
2019), random forest was used to achieve the same mission
for the trunk. Gholami et al. (2018) combined these two
approaches into their model by using random forest to
select important time-serial features, which were then fed
into an MLP containing three hidden layers with ten neu-
rons each. Popular NN like CNN and recurrent NN (RNN)
are also used in several studies (X. Chen et al., 2022;
Gholami et al.,, 2019; Robinson et al., 2022). Gholami et al.
(2019) used four layers of CNN to extract time-serial fea-
tures, which were then fed into an MLP containing one hid-
den layer with 100 neurons. Zou et al. (2023) used six layers
of long short-term memory (LTSM) for feature extraction of
six sensors, followed by one full connection layer for con-
verting the output of LSTM to readable angle. It worth to
mentioning that, within the inductive methods, advanced
machine learning methods appeared to outperform simple
regressions regarding absolute errors, which was evidenced
by comparison results in studies by Esfahani and Nussbaum
(2018); Totaro et al. (2017) that conducted both types of
methods on their data.

Furthermore, it is important to underscore that two stud-
ies (X. Chen et al., 2022; Zhu et al., 2021) tackled the issue
of signal variation due to sensor aging or dislocation by
employing transfer learning techniques. Specifically, Zhu
et al. (2021) achieved sensor compatibility across different
aging stages with a unique algorithm. They introduced a
specialized loss function designed to minimize the maximum
mean discrepancy (MMD) between prediction outcomes
generated by new and aged sensors. On the other hand, uti-
lizing unsupervised transfer learning, X. Chen et al. (2022)
demonstrated system robustness in the face of arbitrary cir-
cuitry modifications and certain lateral displacements of
their sensing sleeve. Moreover, their approach yielded satis-
factory performance across diverse users, joints, and
motions, employing a unified model. They achieved this
mainly depending on two steps. Initially, they applied fuzzy
entropy calculations to the sensor data, followed by a reor-
dering of the input data sequence. This step ensured that
the order of the data was not contingent upon their inherent
spatial positions but was instead related to their positional
relevance to human joints. Subsequently, they computed the
MMD between outcomes derived from the original dataset
and those stemming from new data to serve as the loss
function in their transfer learning framework.

In addition to the types of algorithm models, the subjects
who use the models also matter. Several studies, such as the
ones by Esfahani and Nussbaum (2018); Gholami et al.
(2018, 2019), have conducted both intra-subject and inter-
subject tests on their models. Intra-subject testing refers to
training and testing the model on the same individuals or
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group, while inter-subject testing refers to training the model
on one group and testing it on another group. The angle
monitoring errors in the studies by Esfahani and Nussbaum
(2018); Gholami et al. (2018, 2019) demonstrated that intra-
subject testing consistently outperforms inter-subject testing,
which indicated that individual discrepancy plays a non-neg-
ligible role in joint angle estimation by wearable.

3.1.5. Technical evaluation

Technical evaluation is a crucial step in verifying the effi-
ciency and reliability of the proposed textile-sensing net-
works. Figure 5 displays the indicators used to evaluate the
textile-sensing networks among the included studies, includ-
ing accuracy test in labs (all studies), repeatability (Di Tocco,
Carnevale, Bravi, et al,, 2021; Di Tocco, Carnevale, Presti,
et al., 2021; Maselli et al.,, 2018; Tavassolian et al., 2020),
accuracy test in daily life scenarios (S. Hu et al., 2019; Totaro
et al,, 2017), robustness (R. Liu et al., 2019; Mokhlespour
Esfahani et al., 2017; Totaro et al., 2017), and washability (X.
Chen et al., 2022; R. Liu et al., 2019; Watson et al., 2020).

All studies conducted accuracy evaluation in a laboratory
environment, typically involving participants donning proto-
types equipped with textile-sensing networks and performing
target movements in a laboratory setting. The monitoring
accuracy of the suggested textile-sensing networks was eval-
uated by comparing the angle monitoring data from the
proposed system with ground-truth angles. Besides, two
studies also made the evaluation in daily life scenarios (S.
Hu et al,, 2019; Totaro et al., 2017). Of the 24 studies exam-
ined, only R. Liu et al. (2019), Grassi et al. (2017) and X.
Chen et al. (2022) evaluated users’ subjective perceptions,
focusing on the wearable experience, i.e., comfort, of the
wearable systems. As shown in Figure 5, the comfort was
the only one indicator found used for evaluating the usabil-
ity among the eligible studies.

Considering that washability presents a recurrent chal-
lenge in real-world applications, it is important to note
divergent findings across studies. For example, X. Chen
et al. (2022) assert that their sensors can withstand machine
washing for more than 60 cycles, whereas R. Liu et al
(2019) acknowledge that 60 cycles of machine washing
resulted in a median angular error of 34.1<>". These dis-
parate outcomes highlight the need for further investigation

Additionally, the number of participants in the studies
varied considerably. Five system evaluations (Gupta et al.,
2021; S. Hu et al., 2019; Y. Jin et al., 2020; Robinson et al.,
2022; Ru et al., 2023) recruited only one participant, while
eight studies recruited ten or more participants (X. Chen
et al, 2022; Esfahani & Nussbaum, 2018; Gholami et al,
2019; R. Liu et al, 2019; Rezaei et al., 2019; Tavassolian
et al., 2020; Vu et al.,, 2020; Zhu et al., 2021). As previously
mentioned, the textile-sensing networks developed by Grassi
et al. (2017) and Lau and Soh (2020) were designed to meas-
ure human flexion and extension movements, not a single
particular joint. Therefore, no participants were recruited for
accuracy evaluation in these three studies. Grassi et al.
(2017) evaluated the performance of their network by put-
ting it on a robot that could provide ground-truth knee joint
angles, while the evaluation conducted by Lau and Soh
(2020) was based on a simulated elbow joint. Furthermore, a
prosthetic limb was used by Zou et al. (2023). Additionally,
none of the studies for rehabilitation purposes recruited
patients for evaluation, only health subjects were included.

3.2. Contextual matters in real scenarios

The focus of the 24 eligible studies was predominantly on
technical considerations, while contextual matters were not
the primary scope of their objectives. Only one study expli-
citly implemented the technology in a real-world context by
integrating real-time angle monitoring with a robot designed
to assist individuals with cognitive impairments in dressing
(Robinson et al., 2022). While 16 other studies touched
upon potential applications such as diagnostics, sports,
robotics, and rehabilitation (X. Chen et al., 2022; Di Tocco,
Carnevale, Bravi, et al, 2021; Di Tocco, Carnevale, Presti,
et al., 2021; Esfahani & Nussbaum, 2018; Gholami et al,
2018; Grassi et al., 2017; S. Hu et al., 2019; Y. Jin et al,
2020; Lau & Soh, 2020; R. Liu et al., 2019; Maselli et al,,
2018; Mokhlespour Esfahani et al.,, 2017; Poomsalood et al.,
2019; Rezaei et al, 2019; Totaro et al, 2017; Zhu et al,
2021; Zou et al., 2023), they did not explore in depth how
their textile-sensing networks would operate within these
settings. Additionally, eight studies delineated targeted scen-
arios: two were intended for running support (Gholami
et al, 2019; Tavassolian et al, 2020), one for monitoring
lumbar angles in astronauts to prevent lower back pain (Vu
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Figure 5. The schematic textile strain sensor placement strategies of the 24 eligible studies.



purposes(X. Chen et al., 2022; Di Tocco, Carnevale, Bravi,
et al., 2021; Di Tocco, Carnevale, Presti, et al., 2021; Gupta
et al, 2021; Watson et al, 2020; Zou et al., 2023).
Nevertheless, these studies largely omitted a thorough dis-
cussion of contextual design considerations.

Moreover, the majority of the studies focused primarily
on users’ physical characteristics, often neglecting aspects
related to target users’ perceptions, cognitive states, or sub-
jective needs in real-life situations. With regard to wearable
systems, while key features affecting the user experience -
such as lightweight construction and comfort - were men-
tioned in most of the included studies, only a few engaged
in substantive discussion or evaluation of these factors (X.
Chen et al., 2022; Grassi et al., 2017; R. Liu et al., 2019).

4. Discussion

In this article, we offer a comprehensive review of wearable
systems equipped with textile sensors for the continuous
estimation of human joint angles in recent years. Utilizing a
proposed framework that takes into account both technical
and contextual considerations, we analyze 24 articles and
identify two significant research gaps that merit further
exploration.

The first research gap (Gap 1) concerns the disparity
between advancements in textile-sensing systems for angle
monitoring and the progress made in the field of textile
strain sensors. During our PRISMA workflow, we found a
substantial body of material science research (n =171)
focused on the development of versatile textile sensors cap-
able of motion detection (Jiang et al., 2022; Z. Liu et al,
2022; L. Zhou, Shen, et al., 2022). These studies have con-
firmed excellent sensing performance by evaluating varia-
tions in output signals, such as resistance or capacitance,
corresponding to different human motion angles. The large
volume of these material science studies compared to the
number of eligible articles (n = 24) highlights Gap 1, under-
scoring an evident disparity in this field.

The second research gap (Gap 2) underscores the need
for wearable systems to be proficient not only in the tech-
nical aspects of textile-sensing networks for continuous
angle estimation but also in addressing contextual considera-
tions. These include application scenarios, wearability fac-
tors, and the subjective needs of users in real-world
contexts. As discussed in the findings section, most of the
systems developed in the eligible studies are still in a nascent
prototype stage. Limited evaluation results are available con-
cerning practicality or usability, apart from assessments of
accuracy performance. Future research should aim to
explore specific application scenarios and HCI interfaces
that leverage this textile-sensing technology.

To present additional key insights, challenges, and discus-
sions in this field, we draw upon studies from material sci-
ence, computer science, HCI, as well as broader research in
the human motion monitoring field. For example, although
we excluded studies on human movement classification, such
as those by Avellar et al. (2022); K. K. Kim et al. (2022); B.
Zhou, Geissler, et al. (2022), because they did not meet our
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criteria for continuous joint angle capabilities, these studies
could offer valuable insights for applications in wider con-
texts. To improve the organizational structure of our discus-
sion, we have divided the content into three subsections: i)
Developing Robust Textile-Sensing Networks, ii) Improving
the Wearability of Wearable Systems, and iii) Expanding
Application  Scenarios for Continuous Joint Angle
Monitoring with Textile-Sensing Networks. It is crucial to
recognize that these subsections are not mutually exclusive
but rather exhibit overlapping and interactive elements.

4.1. Developing Robust Textile-Sensing Networks

Textile-sensing networks are fundamental for textile-based
wearable systems capable of continuously monitoring joint
angles, which is a prerequisite for follow-up contextual
applications. As shown in Figure 2, textile strain sensors,
sensor placement, and algorithm were considered as three
key matters for technical competent textile-sensing networks,
and this subsection’s primary focus is on these matters.

4.1.1. Consider suitable sensing characteristics for differ-
ent monitoring purposes
While human joint angle measurement based on textile
strain sensors is a material-driven research field, different
types of sensor exhibit diverse features with regard to the
key parameters of sensitivity, hysteresis, and linearity.
Resistive textile strain sensors are the most widely used
sensors for predicting human movement. According to the
findings provided by material science (Homayounfar &
Andrew, 2020; X. Wang et al., 2022), they usually have high
sensitivity. Recent advancements have amplified this charac-
teristic even further. Specifically, Zhai et al. (2023) and
Duan et al. (2023) have engineered sensors with remarkably
high GF, attaining values of 1275 and 653.4, respectively.
These developments underscore the escalating capability of
resistive textile strain sensors to deliver increasingly sensitive
measurements. However, their performance in hysteresis is
relatively unsatisfied, and the linearity characteristic is prone
to deterioration at high strain (Homayounfar & Andrew,
2020; X. Wang et al., 2022). Fortunately, effective solutions
are being proposed to address the limitations of nonlinearity
and high elastic hysteresis (Yang et al., 2017), and conse-
quently contribute to consistent performance throughout the
life cycle of sensors. Consequently, resistive sensors are
anticipated to see broader application in future endeavors.
Compared to resistive sensors, capacitive strain sensors
have relatively low sensitivity, but they offer high linearity
and negligible hysteresis (S. Kim et al, 2017). It is note-
worthy that some recent studies have been trying to address
the limitation of low sensitivity and have achieved some
progress. For example, X. Hu et al. (2022) developed a cap-
acitive textile sensor with high sensitivity (GF = 2.07). Such
improvement makes capacitive sensors being more suitable
for measuring either small or large angles of body move-
ment. In general, capacitive sensors are preferable consid-
ered for scenarios requiring high stability during long-term
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use. Futhermore, when it comes to the considerations of
long-term use, another parameter, i.e., relaxation should be
taken into account. Relaxation refers to the phenomenon
where the readings of sensors do not remain constant under
a fixed strain due to the loose connection of the textile’s
inner structure (X. Wang, Yang, et al., 2021).

In addition to aforementioned sensor types and parame-
ters, researchers are supposed to remain sensitive to the lat-
est advancements in fabric sensing technologies, as this may
lead to the development of systems with higher accuracy
and specialized sensing demands. For instance, despite the
absence of piezoelectric textile sensors, they represent a
promising future direction as they show self-power capabil-
ities besides motion detecting (Babu et al.,, 2023; Fan et al,,
2023; Wan et al., 2023). Tajitsu (2020) had developed a sen-
sor using piezoelectric poly-l-lactic acid (PLLA) fibers sewn
directly onto clothing for walking motion detection.

4.1.2. Consider more convincing strategies for textile sen-
sor placement

The correlation between textile deformation and joint angles
forms the foundational principle for estimating joint move-
ments, making the location, number, and orientation of tex-
tile strain sensors crucial elements in textile-sensing
networks. As the monitoring of joints with more complex
movement features gains attention, the question of how to
optimally position multiple sensors for a robust network
becomes increasingly urgent. Researchers are moving
towards more systematic approaches instead of relying solely
on traditional, anatomically-based empirical methods. For
example, Tormene et al. (2012) employed PCA to identify
the most effective sensor placement for trunk movement
detection. Currently, the most reliable method involves
using optical motion tracking systems to pinpoint areas of
maximum skin deformation during movement, thereby
ensuring that the sensors are optimally stretched. This tech-
nique was first employed by Mattmann et al. (2007), using
an optical motion tracking system to place 21 textile sensors
on the back for upper trunk posture classification. The find-
ings of this study have subsequently been cited in other
works (Esfahani & Nussbaum, 2018; Rezaei et al.,, 2019),
reinforcing its methodological importance. Sensor place-
ments determined through this approach are considered to
be more readily transferable to subsequent studies, and it is
highly recommended for future research to consider utiliz-
ing this method. Furthermore, as demonstrated by X. Chen
et al. (2022), the strategy of determining sensor placement
based on calculating each sensor’s effective monitoring area
offers an insightful approach.

4.1.3. Towards more general and reliable angle estimation
algorithms

Despite various types of sensors and placement strategies,
the ultimate performance of angle estimation among eligible
studies was comparable, which could be credited to algo-
rithms. Although the selected studies achieved acceptable
results in either of the two key constituents of the

processing pipeline (i.e., data fusion and inference model-
ing), the implementation of more general and reliable angle
estimation algorithms still faces evident limitations and
challenges.

As for data fusion, only a few studies (Gholami et al., 2018,
2019; Tavassolian et al., 2020; Totaro et al., 2017; Vu et al,
2020) addressed this issue. The rest of the studies either
achieved the task with a single sensor, which neglected the
potential of multi-sensor fusion, or simply combined data
from multiple sensors without applying any fusion techniques.
However, both the selected studies in this review (Gholami
et al., 2018; Tavassolian et al., 2020; Vu et al., 2020) and some
recent studies (Padhy, 2021; PaPan et al., 2020; Qiu et al,
2022; Yuan et al., 2020) have demonstrated that data fusion at
any level and any modality can boost the final performance.
For instance, Yuan et al. (2020) performed feature-level fusion
on data from multiple sensors to recognize sign language,
which involves complex upper limb and finger movements.
They used a deep CNN to extract shallow and deep features,
representing global and local information respectively, and
combined them for further modeling. They achieved an accur-
acy of 99.93%, demonstrating the potential of data fusion for
complex human movement analysis.

As for the inference models, deductive approach is based
on human anatomy and explores the relationship between
kinematics and sensor deformation. This kind of method
yielded acceptable and clear outcomes for joints with one-
degree-of-freedom motions. However, the parameters of the
equations require individual anthropometric data, which
somewhat weakens the ease of widespread application of
this method. By contrast, inductive methods are more reli-
able in all aspects, especially advanced machine learning
methods such as NNs that outperforms other inductive
methods. This can be attributed to the strength of NNs in
handling non-linear data and their compatibility with vague
data. For example, the ever-changing relative positions
between sensors and target joints (X. Chen et al, 2022; S.
Hu et al., 2019; Rezaei et al, 2019) and the deformation
properties of the skin, such as elastic deformation, recovery,
and skin laxity, may introduce unexpected variations into
conventional inference models (X. Chen et al, 2022).
However, NNs can handle these challenges with deeper
layers, larger neural units or even transfer learning. This
may also explain why different sensor characteristics can
achieve comparable results.

However, the method of inductive models also has its
drawbacks. For example, these models may overfit their
training data, as shown by the errors in inter-subject and
intra-subject results. This may impair the generalization
ability of the proposed textile-sensing networks. To tackle
this, researchers can use more training data from diverse
subjects (Esfahani & Nussbaum, 2018; Mokhlespour
Esfahani et al, 2017), or adapt models to each subject
(Gholami et al., 2018, 2019). Moreover, a specific loss func-
tion in machine learning can guide models to consider these
challenging factors and address these problems. For
example, X. Chen et al. (2022) employed transfer learning
techniques, specifically leveraging the MMD between distinct



users, to achieve satisfactory outcomes. Such an approach
provides a promising approach that future research could
adopt to tackle similar challenges.

Nevertheless, irrespective of the model type employed,
sensor aging remains an intractable issue due to the inherent
variability in original input data and evolving patterns.
Several methodologies have been proposed to address this
challenge. For example, X. Chen et al. (2024) deployed aver-
age pooling layers and a min pooling layer to assess and
calibrate shifting baselines. Zhu et al. (2021) implemented a
loss function designed to quantify the estimation discrep-
ancy between aging and new sensors, with which the infer-
ence model will minimize this variance by learning common
patterns discernible in both sensor types.

4.2. Improving the wearability of wearable systems

Wearability, defined as the interaction between wearable
objects and the human body, significantly impacts user
experience and acceptability (Gemperle et al., 1998). Beyond
fundamental prerequisites such as lightweight construction
and comfort, which are integral to the user’s experience with
wearables, additional factors pertaining to the system’s prac-
tical utility warrant consideration. These include methods of
integration, power management, and washability. In the fol-
lowing subsection, we offer a comprehensive discussion and
provide recommendations aimed at enhancing wearability.
According to the classification by Seymour (2008), the
levels of integration for wearable prototypes can be catego-
rized into three distinct types: attachable, embedded, and
integrated. In the majority of studies examined, textile sen-
sors were either physically mounted or embedded into pre-
existing textile substrates, typically through methods such as
adhesion or sewing. These approaches predominantly result
in lower degrees of integration, falling under the categories
of either attachable or embedded. Two primary concerns
arise from these methods of integration. First, the comfort
of the wearer may be compromised, as the fixation techni-
ques employed can adversely affect the flexibility and
stretchability of the substrate material. Second, the potential
for misalignment between the textile sensors and the sub-
strate could introduce inaccuracies in monitoring outcomes,
thereby undermining the sensor’s performance. However,
advancements in dimensional compatibility (Hwang et al,,
2022) have enabled the integration of fibers, yarns, and fab-
rics into non-conductive materials through textile fabrication
techniques such as embroidery and knitting. Consequently,
a higher level of integration in wearable systems is antici-
pated. For instance, the knee pad developed by Gupta et al.
(2023) for monitoring knee joint motion utilized stretchable
textile sensors and exemplified an integrated-level system.
Regarding power considerations, the sensing networks
described in the relevant literature generally operate under
the assumption of a readily available power source.
Conventional approaches, such as connection to an electrical
grid or the inclusion of a battery system, may negatively
impact the device’s wearability. To mitigate these challenges,
alternative solutions such as piezoelectric textile sensors
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(Wan et al., 2023) and power-generating textiles should be
considered. For instance, research by M. Li et al. (2021) has
contributed to this area by developing flexible fiber-based
Zn-ion batteries with a high energy density of 36.04
<>mWh/cm®. Notably, these fibers demonstrate consider-
able stretchability (up to 900%) and bending capacity (rang-
ing from 0 to 180 degrees), indicating their potential for
seamless integration into textile substrates. These advance-
ments offer valuable insights into the feasibility of creating
an integrated system that combines textile sensors, power
sources, and substrates in a unified manner.

It is important to acknowledge that higher levels of inte-
gration may compromise the ease of component replaceabil-
ity. One potential solution to this challenge is the
incorporation of sensors into detachable components, as evi-
denced in studies where textile strain sensors were affixed to
substrates using metal snaps or buttons (Di Tocco,
Carnevale, Bravi, et al., 2021; Di Tocco, Carnevale, Presti,
et al, 2021). While this method of attachment facilitates
both sensor replacement and substrate washability, it may
introduce measurement inaccuracies if the sensors are not in
direct contact with the substrate. In summary, a myriad of
integration methods exist in the literature, and the selection
among them should be predicated on the specific objectives
and potential application contexts of each study.

Additionally, the aspect of washability, which significantly
contributes to the practical utility of wearable systems, has
been largely neglected in the studies under consideration.
However, it is noteworthy that a growing body of research
in material science has begun to address this issue (Duan
et al., 2023; M. Li et al, 2022; Z. Li et al., 2021). For
example, a study by M. Li et al. (2022) introduced a fiber-
based Zn battery rescue rope that displayed remarkable
resilience under extreme conditions of fire and water expos-
ure. In a similar vein, research by Duan et al. (2023) pre-
sented a stretch-tolerant, super-hydrophobic strain sensor
with exceptional water-resistant properties. These advance-
ments in sensor technology provide promising directions for
incorporating washability considerations in future research.

4.3. Expanding application scenarios

According to the findings, the developed wearable systems
showed acceptable accuracy for continuous joint angle mon-
itoring. However, the research gap 2 indicated that most of
the systems were still in a primitive prototype stage. It is not
yet clear in which specific application scenarios these sys-
tems could be further leveraged. By combing the insightful
literature in both motion monitoring and HCI fields, as
shown in Figure 6, some promising application domains
were discussed in this subsection.

4.3.1. Textile-based human motion measurement may be
the new growth point of rehabilitation medicine
Rehabilitation-related applications have long been a primary
focus of wearable systems for human movement monitoring,
as noted in multiple studies (M. Chen et al., 2017; McLaren
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Figure 6. lllustration of possible application scenarios for future research.

et al, 2016; Semjonova et al, 2020). Insights from studies
aimed at human activity classification, applied in a wide
range of scenarios like gait recognition for rehabilitation
(Wei et al., 2023) and sports rehabilitation (Tolba & Al-
Makhadmeh, 2020), support this focus. Given that the stud-
ies we included demonstrate the potential of textile-sensing
wearables for continuous joint angle estimation, the timing
is ideal for HCI researchers to incorporate these textile
sensors into actual rehabilitation or medical settings for
usability and clinical performance assessment. On one hand,
in-depth collaboration with clinical experts could benefit
common rehabilitation scenarios such as stroke-induced
physical dysfunction and musculoskeletal injuries. These
conditions could be better managed through real-time moni-
toring of abnormal movements using textile-sensing net-
works. On the other hand, the high flexibility and low
intrusiveness of textile sensors offer a higher comfort level,
which is especially important in a rehabilitation context.
This technology also addresses psychological needs of
patients, including privacy concerns and self-esteem.

4.3.2. Elegant interactive interfaces for professionalism
and recreation are expected

As a large number of studies from material science, HCI
and engineering have demonstrated the versatility of textile
sensors across various scenarios (Xu et al., 2023), the tech-
nology for continuous joint angle estimation, based on tex-
tile-sensing networks, also holds great promise. For wearable
scenarios, it has potential applications in a wide range of
areas including special occasion coveralls, professional
sports, entertainment and. Despite the limited number of
application cases in eligible studies, research focusing on
human activity classification has garnered significant atten-
tion and could offer valuable insights (Q. Liu et al., 2023).
For example, MIT Media Lab (Tibbits, n.d.) explored how

VR/AR/XR Control

Recreation

to use textile strain fibers in spacesuits to monitor astro-
naut’s elbow movement. In the entertainment industry,
Liang et al. (2021) developed a smart dance leotard based
on fabric sensors that assists dancers with their movements,
while Greinke et al. (2021) designed a jacket that detects the
conductor’s movement to improve orchestra performances.
On the other hand, beyond wearables, more interactive
interfaces based on joint angle monitoring are expected to
emerge, including those in popular HCI research fields, such
as intelligent cockpit, smart home, artistic expression (Tepe
et al., 2023), mixed realities (XR)(Wen et al., 2020).

4.3.3. Further usability and clinical evaluations deserve
more attention

The included studies primarily focused on technical evalua-
tions and did not provide tangible or perceptible feedback
for end-users, making it challenging to conduct usability
evaluations with participants. However, as joint angle esti-
mation research expands into wider application scenarios,
clear and effective feedback will become a prerequisite for
evaluating wearable systems in real-world scenarios, allowing
participants to better interact with wearable systems and
provide valuable insights for researchers. Miniature displays,
wearable actuators, or mobile phone apps are traditional
feedback modules that can be incorporated into wearable
devices or separate devices. Besides, the textile-based feed-
back modules are also worth considering (J. Shi et al., 2020),
such as luminous fibers (Olwal et al., 2018), thermochromic
fabrics (Q. Wang, Ye, et al,, 2021), and knitted textile vibra-
tion modules (J. H. Kim et al., 2022), etc.

Once the system is capable of feedback, there is the possi-
bility of further evaluation. As also suggested in an earlier
review relating to e-textiles and rehabilitation (McLaren
et al,, 2016), in the realm of wearable systems for rehabilita-
tion, it is crucial to conduct further usability and clinical



testing to ensure their efficacy. To enhance the credibility of
these systems, evaluations should involve patients under-
going rehabilitation training. Additionally, the participation
of physiotherapists in evaluation sessions can provide valu-
able advice and guidance for researchers to iterative and
improve the system. It is important to note that limited test-
ing time may introduce bias in the results. Long-term evalu-
ation, on the other hand, can help analyze the monitoring
performance of the system and provide insights into the
wearability and lifespan of the wearable systems.

5. Conclusion

In this systematic review, 24 eligible wearable systems equip-
ping with textile strain sensors for continuous human joint
angle estimation were analyzed with the proposed framework.
The findings suggested that the existing textile-sensing net-
works were capable for monitoring most parts of the body’s
continuous joint angles with satisfactory accuracy, but there
were still challenges in terms of both technical and contextual
matters. On one hand, more compact collaborations among
experts from different disciplines are expected for textile-sens-
ing networks building, including applying textile sensors that
show better performance, employing more convincing sensor
placement strategies, and constructing more robust algo-
rithms. On the other hand, these studies only made superficial
references to possible application targets, and there was still a
lack of in-depth research or application demonstrations based
on pathological or psychological disorders. Vast application
scenarios like rehabilitation, professional athletics, and enter-
tainment, and also the usability evaluation in these cases are to
be explored. Overall, this paper examined wearable systems
for continuous human motion estimation based on textile sen-
sors, using a new proposed framework. We do hope the find-
ings, discussions, and insights presented could benefit more
researchers to contribute to diminishing the existing research
challenges mentioned in this field.
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