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Designing Smart Legging for Posture Monitoring Based on Textile Sensing 
Networks

Qi Wanga, Fang Cuia, Runhua Zhanga , Leheng Chena, Jialin Yuana, Xiaohua Suna, and Bin Yub 

aCollege of Design and Innovation, Tongji University, Shanghai, China; bCenter for Marketing & Supply Chain Management, Nyenrode 
Business University, Breukelen, Netherlands 

ABSTRACT 
Running is a highly popular form of exercise, while incorrect running posture over an extended 
period can lead to severe knee injuries. Smart textiles have recently demonstrated significant 
potential for continuous motion monitoring. This study involved the design and development of a 
smart legging with a resistive textile sensor network to monitor lower body motion. The study 
consists of three main parts. Firstly, we tested textile sensors in terms of linearity and robustness 
to determine the basic sensor unit that can monitor the characteristics of running postures. Next, 
optimal sensor placement was determined through comparison experiments, and a sensor net
work was proposed. Finally, based on the LSTM model with data gathered from 6 participants, we 
developed the smart legging system that is capable of identifying three types of improper running 
postures and normal postures with 99.1% accuracy. The evaluation revealed that the smart leg
ging system had the potential to help users adjust their running postures to prevent knee injury 
through continuous monitoring and multi-modal feedback.
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1. Introduction

1.1. Background

Running has been the most popular exercise because of its 
widely known health benefits. Regular running, as aerobic 
exercise, may reduce risk factors for cardiovascular disease 
and obesity (Lee et al., 2014). However, poor running pos
tures may lead to musculoskeletal injuries, especially in the 
lower limbs (Van Gent et al., 2007). Incorrect running pos
tures may disrupt the lower limb’s center of gravity, result
ing in increased ground reaction forces on bones and joints 
of the body. For instance, excessive internal and external 
rotations of the knees and hip swings during running may 
weaken the stabilizing forces and increase pressure on the 
knee joints, which may cause knee injuries if it occurs over 
an extended period (Fredericson & Misra, 2007; Taunton 
et al., 2002; Van Gent et al., 2007). Therefore, continuous 
posture monitoring and quick correction are crucial for 
reducing injuries associated with running.

Recently, textile strain sensors have demonstrated their 
potential in the field of posture monitoring, such as estimat
ing elbow joint angle (Liu et al., 2019) and assessing lumbar 
posture assessment (Vu et al., 2020). Advancements in mate
rials and computing technologies have notably enhanced the 
stability and precision of textile sensors. This improvement 
is attributed to refined sensor preparation techniques, 
machine learning (ML) algorithms, and the integration of 
human-computer interaction (HCI). Despite these advance
ments, the utilization of textile strain sensors for monitoring 

running postures has received limited research attention. 
Hence, this study aims to explore the integration of textile 
strain sensors, deep learning algorithms, and HCI technolo
gies to develop a smart legging wearable system capable of 
monitoring running postures and providing multi-modal 
feedback guidance during running.

1.2. Challenges and motivation

From the analysis of existing literature, we identified three 
key challenges in employing textile strain sensors to develop 
a smart legging system that aims at monitoring lower limbs’ 
movement and classifying improper running postures. The 
first challenge is determining the configuration and arrange
ment of textile strain sensors within a legging to ensure 
accurate monitoring outcomes. The placement, orientation, 
and quantity of sensors can significantly impact the accuracy 
of a body motion tracking system (Tavassolian et al., 2020). 
And these factors about sensor placement depend on the 
features of the monitored body motion and the involved 
joints. Therefore, specific methods are often required to 
determine the placement of textile sensors in the develop
ment of sensorized wearable garments. For instance, the 
study by Tognetti et al. (2005) adopted a heuristic approach 
that involved positioning sample sensors around the joints 
of the upper limb, observing the data measurements during 
the execution of natural movements, and ultimately deter
mining the sensor placements that could produce most 
meaningful outputs regarding movement reconstruction. 
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In the study by Gholami et al. (2019), the authors utilized a 
grid of markers and six motion capture cameras to analyze 
the strains on the garment for finding the best sensor place
ment for hip joint angle estimation. In this study, to address 
this challenge, we first explored the performance of the fab
ric sensing material to determine the configuration of the 
basic sensor unit. Then we developed a prototype to test the 
data outputs from different combinations of multiple sensor 
locations. Based on the results, we determined the ultimate 
sensor network that could effectively collect enough infor
mation to infer the essential features concerning the running 
posture.

The second challenge of designing a smart legging system 
is identifying what types of improper running postures 
should be monitored. Patellofemoral Pain Symptoms (PFPS) 
and Iliotibial band syndrome (ITBS) are the two most 
prevalent running-related injuries (Ferber et al., 2009; 
Taunton et al., 2002). And PFPS affects approximately 13% 
of runners. The research by Besier et al. (2001) about inten
sive lower limb movement analysis has revealed that internal 
and external rotation of the knee joint were the primary 
postures that caused knee injuries during running. During 
running, the movement of the hip joint also plays a crucial 
role in maintaining proper alignment of the lower limb and 
the stability of the knee. Pelvic rotation in the frontal plane 
may place extra stress on the knee joint and cause its 
instability (Willson et al., 2008). Hence, in this study, we 
focused on the monitoring of three improper running pos
tures that mostly cause knee injuries: internal and external 
rotation of the knee, and hip joint instability, as shown in 
Figure 1.

The third challenge in developing the smart legging sys
tem is how to translate the outcomes from the posture clas
sification algorithms into effective feedback for end-users, 
making them aware of their running posture and adjust the 
incorrect posture timely. To address this challenge, the sys
tem interactivity and user experience need to be considered 
in the design of the smart legging system. While running, 
timely intervention and guidance (Van Hooren et al., 2020) 
upon detecting incorrect running postures not only can pre
vent users from running injuries, but also help them relearn 
the running skills and improve running performance. In the 
sports and fitness industry, there has been a huge potential 
market for interactive wearable products. In this study, 
beyond the exploration of textile sensors and posture classi
fication algorithms, we also preliminarily explored the inter
action and feedback design for smart legging system.

1.3. Structure of the study

In this study, we developed a comfortable smart legging sys
tem that can detect incorrect running postures and provide 
users with multi-modal user feedback for injury prevention. 
The system consists of an array of resistive textile strain sen
sors and a corresponding deep-learning model to recognize 
running postures. The system was evaluated among 6 partic
ipants who were similar in size and fitted to the smart leg
ging prototype. The results provided new insights for the 
product development of sports manufacturers, and provide 
future development possibilities and practical references for 
stakeholders in smart textile and related fields. As shown in 
Figure 2, the study includes three stages. In each stage, we 

Figure 1. Illustration of three most common improper running postures.

Figure 2. Three stages of the study: (1) investigation of the sensor unit, (2) design of sensor network, and (3) development of the smart legging system.
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focused on one of the following research questions (RQs) 
corresponding to the challenges mentioned above:

� RQ1: What requirements should be included for the tex
tile sensors?

� RQ2: How to optimize the sensor placements of the 
smart legging?

� RQ3: To what extent would the smart legging prototype 
be accurate regarding running posture classification and 
acceptable regarding its usability?

In the remainder of the paper, we present the findings of 
the first stage which investigated the textile sensor perform
ance and the requirements for a sensor unit (to answer 
RQ1). We then discuss the results of the second stage which 
focused on the optimization of sensor placements and the 
design of the sensor network (to answer RQ2). Next, we 
present the development of the smart legging system which 
integrates the sensor network and corresponding deep-learn
ing algorithms for running posture classification. And lastly, 
we discuss the final findings of the user study which eval
uated the system regarding its usability and user experience 
(to answer RQ3).

2. Related work

2.1. Advances in body motion monitoring technologies

Kinematics monitoring technologies are developed to cap
ture and analyze body motion and are extensively applied in 
sports analysis and rehabilitation to reduce the user’s risk of 
exercise injuries and achieve the desired training effects 
(Elvitigala et al., 2019). Marker-based optical motion capture 
technique has been readily available for many years. And it 
is commonly considered the gold standard for movement 
monitoring due to its accurate results (Pellegrini et al., 2021; 
Wang et al., 2017). Recently, various markerless solutions 
are rapidly developed based on the combination of advanced 
image processing algorithms and image capturing techniques 
including Web camera, Kinect, and OpenPose (D’Antonio 
et al., 2020; Wade et al., 2022). While optical-based motion 
tracking systems require special set-up and high costs. They 
are restricted by space and the complexity of the environ
ment, which makes them not suitable for monitoring out
door running.

In the last decades, due to the advantages of flexibility 
and affordability, IMU-based (Inertial Measurement Units) 
wearable systems have become mainstream in sport kine
matics analysis (Rana & Mittal, 2021). As the IMU sensors 
are compact and lightweight, they can be easily integrated 
into wearable garments, monitoring the various types of 
body motion, such as arm motion (Prayudi & Kim, 2012), 
upper body motion (Filippeschi et al., 2017) and lower limb 
motion (Hamdi et al., 2014). Nevertheless, IMU sensors 
have certain limitations. For instance, they typically require 
extra belts for mounting and are prone to displacement dur
ing long-term use (Filippeschi et al., 2017; Wang et al., 
2017). Consequently, improving wearability and comfort 

becomes the main challenge for IMU sensors in practical 
applications.

In addition, various commercial strain sensors (Cha 
et al., 2017; Saggio et al., 2016) have been evaluated and uti
lized to monitor human motion and estimate human joint 
angles. For instance, commercial flex sensors by Flexpoint 1

and Spectra2 have been explored for limb motion tracking 
(Borghetti et al., 2014). By stitching flex sensors at multiple 
joint positions, the wearable garment could sense flexion 
angles during static and kinematic motions (Abro et al., 
2019). For instance, flex sensors are extensively used in vari
ous glove-based systems (Dipietro et al., 2008) to measure 
flexion of the joints in fingers and wrists. However, flex sen
sors and piezoelectric films have limitations in wearable 
design due to their inherent material rigidity. Their limited 
flexibility, softness, and durability can restrict the natural 
movement of the fabric and impede comfort for the wearer.

Recently, smart textiles also known as electronic textiles 
(e-textiles) have attracted great research interest in the wear
able motion monitoring community (Shi et al., 2020; Wang 
et al., 2020). E-textiles incorporate electronic components 
within their textile structure, endowing them with the ability 
to fulfill both fabric and sensing functionalities. For instance, 
through the intertwining of carbon fiber yarns onto polyur
ethane fibers, the composite fiber demonstrates exceptional 
strain-sensing properties, including enhanced conductivity, 
sensitivity, and dynamic durability (Xu et al., 2023). By 
employing customized conductive paints composed of polya
niline and carbon nanotubes, the silk yarns can be endowed 
with sensing capabilities to monitor various crucial signals, 
including strain, temperature, and the presence of harmful 
gases (Ouyang et al., 2022). Due to their merits of low cost, 
lightweight, and flexibility, smart textiles can easily fit vari
ous human bodies to track ambulatory and daily-life human 
motion (Wang et al., 2020). Studies show that textile sensors 
have been used in various applications, such as trunk moni
toring (Mokhlespour Esfahani et al., 2017), shoulder kine
matics (Jin et al., 2020), knee joint monitoring (Di Tocco 
et al., 2021), etc.

2.2. Textile strain sensors for lower body motion 
monitoring

Due to their comfort and flexibility, textile strain sensors 
have been widely used in the fields of health, rehabilitation, 
and sport (Choudhry et al., 2021). Being embedded into a 
wearable garment, textile strain sensors could measure the 
wearer’s body motions by the changes in the sensor’s resist
ance, which are subsequently converted into an electrical 
signal for further analysis and monitoring. Textile strain 
sensors are often utilized to monitor joint movements and 
characterize specific postures of the lower extremities. For 
instance, by capturing activity signals from the knee, ankle, 
and hip joints, textile strain sensors can monitor specific 
lower limb movements Gholami et al. (2019); Totaro et al. 
(2017). Munro et al. (2008) designed a smart knee sleeve to 
detect the angle of knee flexion by adopting a conducting 
polymer. Skach et al. (2019) proposed smarty pants for 
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posture and behavior classification based on pressure sen
sors. And Watson et al. (2020) succeeded in employing a 
conductive fabric sensor to calculate knee angles.

Beyond the calculation of knee angles, textile strain sen
sors can be utilized for monitoring more complex knee 
movements. For instance, Li et al. (2019) located 10 knitted 
conductive strain sensors around the knee joint, allowing for 
the recognition of the four gait patterns of running, walking, 
climbing, and descending stairs. Also, Gholami et al. (2019) 
developed a system that employs textile strain sensors on 
the pelvis, knee, and ankle to estimate the sagittal, frontal, 
and cross-sectional angles of multiple joints during running. 
A study by Tavassolian et al. (2020) developed new strain 
sensors by embedding rectangular loops of the stretchable 
conductive copper-coiled elastic thread on elastic textile. 
With 4 sensors on the anterior and posterior sides of the 
pelvic region, their setup achieved multi-axes hip angle 
tracking.

2.3. Running movement monitoring

Running kinematics is the key factor associated with run
ning injury (Van Gent et al., 2007). And there is a growing 
body of research that focuses on recognizing and analyzing 
running postures (Lopez-Nava & Munoz-Melendez, 2016). 
Running involves a range of movements within the lower 
limbs, including the thigh, knee, leg, or foot (Folland et al., 
2017); therefore, running monitoring can be realized by 
various wearable form-givings. For instance, to monitor 
kinematic changes with fatigue, 12 wireless inertial measure
ment units(IMUs) sensor devices are attached to the wear
er’s foot, legs, arms, and wrist to capture the full body 
movement throughout the runs (Strohrmann et al., 2012). 
Being connected with two IMU sensors attached to the 
wearers’ arms and legs, smartwatch APPs could recognize 
the changes in running movement (Seuter et al., 2020). 
Nevertheless, such systems relying on the placement of mul
tiple sensors on the user’s body may be too obtrusive for 
day-to-day wear.

To improve the runner’s comfort and system practicality, 
a variety of shoe-based and insoles-based monitoring sys
tems have been designed. For instance, Bamberg et al. 
(2008) developed a GaitShoe system by integrating multiple 
types of sensors including FSR, piezoelectric sensors, and 
bend sensors to achieve complicated gait analysis. By the 
integration of multiple force-sensitive resistors (FSR), ab 
insole was enabled to detect the force distribution on the 
runner’s foot (Mat Dris et al., 2020) and to recognize foot 
pronation and supination (Dom�ınguez-Morales et al., 2019), 
the patterns of heel acceleration and plantar pressure for 
characterizing postures (Sazonov et al., 2011). A recent study 
(Elstub et al., 2022) developed a smart shoe system by com
bining an inertial measurement unit (IMU) and pressure 
insole with a trained algorithm to estimate tibial bone force 
in running. Due to the location of sensors, shoe-based wear
able systems are mostly effective in detecting foot position 
and plantar pressure for running gait analysis, while detect
ing specific improper running posture that involves the 

rotation of the knee and hip joint instability can be chal
lenging. This study aims to address this challenge.

Given that injuries related to running can arise due to 
numerous factors of running gait, continuous multi-axis 
kinematic monitoring of the lower extremities becomes a 
crucial method in the analysis of running posture and gait. 
This method requires the acquisition of movement data 
from multiple points on the body. In terms of implementa
tion, IMU sensors remain the predominant sensor type 
incorporated in most wearable systems of running gait ana
lysis (Mason et al., 2023). However, in long-term monitor
ing, most IMU-based multi-sensor systems show significant 
limitations including being prone to displacement, afflicting 
with drift, challenging to align IMU’s coordinate system to 
the physiological bone coordinate system Gholami et al. 
(2019), and inadequate comfort. To address this challenge, 
in this study, we embedded multiple soft textile strain sen
sors into a running legging to improve wearability and com
fort, and we further developed deep learning models to 
process multi-channel motion data, achieving high accuracy 
for the classification of targeted running postures.

3. Stage one: Exploration of the sensor unit

In the first stage, we focused on the exploration of the fabric 
sensing material to clarify the requirements for the sensor 
unit in the scenario of running posture monitoring. The 
ideal fabric sensor should meet the following requirements: 
(1) the sensor data exhibits a linear relationship with strain 
over the strain range of the actual application, (2) the max
imum strain range can monitor the large-scale dynamic 
movement, and (3) the sensor data could remain robust, 
reliable, and consistent in repeated multiple stretches. Before 
we made the selection and configuration of the sensor unit, 
we first studied the deformation and strain range of the fab
ric around the knees, the major joint supporting running.

3.1. Study of the fabric deformation around the 
movable joint

When individuals wear sports leggings, the fabric closely 
adheres to the skin of their lower limbs and undergoes 
deformation with the body’s movement. Previous studies 
(Choi & Hong, 2015; Luo et al., 2017) suggested that the 
knees are the main areas of skin deformation during wide- 
ranging lower limb movements. Therefore, this study 
focused on the strain range of the fabric around the knee 
joints. During running, the fabric around knee joints will be 
stretched and recovered repeatedly. To decide the maximum 
strain range required for the fabric sensor in running move
ment, it is supposed to find the maximum value within 
which the fabric can be stretched as much as possible and 
can still return to its original state and retain the original 
resistance characteristics of the sensor.

In this study, we performed a stretching movement simu
lation experiment to examine the required maximum strain 
range. Compared to normal running, the stretch exercise 
may induce larger fabric deformation, potentially leading to 
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the fabric sensor’s failure to restore its original characteris
tics. As shown in Figure 3, on each lower limb, we selected 
four marker points (P1–P4) that were symmetrically posi
tioned along the central axis of the leg and knee joint. The 
initial distances (D1, D2, D3) between each pair of adjacent 
points on an unworn legging were set at 5 cm. This enabled 
the measurement of the fabric’s deformation at three lengths 
(5 cm, 10 cm, and 15 cm). Specifically, we estimated the 
deformation of the 10 cm fabric by averaging the sum of D1 
and D2 and the sum of D2 and D3. We observed the 
deformation of the 15 cm fabric by summing the values of 
D1, D2, and D3. The D1, D2, and D3 were measured with a 
tape ruler while the participant remained “stationary” and 
“stretched the outer thigh” respectively. In each condition, 
we measured D1, D2, and D3 three times for both the left 
and right lower limbs. The average of these six measure
ments was then calculated as the final value.

Next, we calculated the minimum and maximum deform
ation ratio of the fabric in different lengths (5 cm, 10 cm, 
and 15 cm). By comparing the length of fabric measured in 
the stationary condition to its original length, we calculated 
the minimum deformation ratio of the fabric in the running 
exercise. Similarly, we calculated the maximum deformation 
ratio by comparing the fabric length with “stretching the 
outer thigh” to its original length. The results showed that 
the three fabric lengths displayed a similar minimum 
deformation ratio at approximately 10%. The maximum 

deformation ratio varies across fabric lengths: namely 80% 
for 5 cm, 70% for 10 cm, and 63% for 15 cm.

3.2. Sensor performance testing with different 
configurations

In this study, we selected conductive elastic webbing (Taike, 
Suzhou, CN; Braided structure with conductive silver fiber, 
polyester, and latex silk) as the basic sensing fabric due to 
its adequate performance regarding the linearity, stability, 
and strain range requirement. Its elasticity is guaranteed by 
its fabric structure and latex filaments. Figure 4(a) shows the 
working principle of the conductive fabric sensor. When 
being stretched, the contact points between the silver fibers 
decrease, causing an increase in the resistance of the fabric. 
When the sensor is not stretched, the fabric has a densely 
woven fabric structure with maximal contact points. The 
conductive elastic webbing could have different intrinsic 
resistance based on its proportion of silver fibers and could 
be customized in different widths and lengths. Therefore, 
determining the configuration for the sensor unit becomes 
the first crucial step in building a smart legging system.

To determine the suitable configuration of conductive 
elastic webbing for monitoring running posture, we com
pared a group of fabric sensor samples that differ in three 
properties: intrinsic resistance, widths, and lengths, as shown 
in Figure 4(b). Six sensor samples of different intrinsic 

Figure 3. Stain range measurement experiment.

Figure 4. (a) Schematic diagram of the principle of conductive fabric sensor (b) examples of the sensor samples, with the original resistance in 10 cm length.
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resistance and widths (10 mm, 20 mm, and 35 mm) were 
examined. The test focused on two aspects of sensor per
formance: linearity and recoverability. Firstly, regarding lin
earity, resistance value versus strain should remain linear 
with good repeatable stability during body movements. 
Secondly, considering large deformations caused by stretch
ing during running, the fabric sensor is required to recover 
to its original state after being applied to the maximum 
strain. As shown in Figure 5, a tensile resistance test plat
form has been built with a stepper motor and an Arduino 
development board. Each sensor sample was attached to a 
slider that could move reciprocally within the specified dis
tance range. The sensor samples were stretched with two 
maximum strains (60% and 80%). The stretching speed was 
set at 120 mm/min and the tensile tests were repeated in 20 
cycles.

Figure 6 shows the recorded resistance changes of the 
sensor samples under 60% and 80% strains. Most of the 
samples had better linearity and sensitivity within the 60% 
strain. In particular, the samples with lower intrinsic 

resistance (ST2, ST3, ST5, ST6) displayed more noise when 
reaching approximately 80% strain. In comparison, the fab
ric sensor samples ST1 (width ¼ 20mm) and ST4 (width ¼
10mm) show better linearity and sensitivity within 60% of 
the strain (as shown in Figure 6(a)) and also better stability 
with less noise when close to 80% strain (Figure 6(b)). In 
further comparison, ST4 (width ¼ 10mm) had better stabil
ity performance than ST1 (width ¼ 20mm). For instance, 
when reaching the maximum strain at 80%, ST1 showed a 
slight deformation (see Figure 7). Therefore, 10 mm ST4 was 
finally selected for further performance tests to specify the 
parameters of the sensor unit.

After determining the intrinsic resistance and width, we 
further explored the suitable length for the sensor unit. 
Three 10 mm wide sensor samples with different lengths 
(sample 1: 100 mm length; sample 2: 150 mm length; sample 
3: 200 mm length) were evaluated in the repeated tensile test 
with 20 cycles. The stretching speed was set at 120 mm/min. 
As shown in Figure 8, sample 2 (150 mm length) showed 
better linear changes in resistance within the strain range of 

Figure 5. (a) Sensor tensile testing platform; (b) diagram of testing platform.

Figure 6. Test results for various sensor samples under 60% and 80% strain.
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10–60% (see grey curves). A linear analysis was also per
formed to compare the coefficient of determination (R2). 
With a 60% maximum strain, sample 2 has the best sensor 
linearity (R2 ¼ 0.995) compared to sample 1 (R2 ¼ 0.987) 
and sample 3 (R2 ¼ 0.989). The linear characteristic of sam
ple 2 shows a gauge factor (GF ¼ DR=R0e where DR is the 
variation of the sensor resistance, R0 is the original sensor 
resistance, and e is the applied strain) of about 23.24. A 
high GF value is a positive factor for strain gauge realiza
tion, and the GF value of our sample 2 from ST4 demon
strates relative advantages compared to conventional textile 
strain sensors Liang et al. (2019).

To further validate the performance of sensor sample 2, 
we assessed its hysteresis and repeatability. Hysteresis holds 
significant importance for strain sensors, given its adverse 
impact on sensor durability (Schmool & Mark�o, 2018). 
Figure 9(a) illustrates the hysteresis curve in the stretching- 

relaxing cycles, the maximum hysteresis is 24.85%, which is 
also comparable to typical textile strain sensors Liang et al. 
(2019). For the evaluation of repeatability, the sample under
went 100 cycles of stretch using the tensile testing platform, 
with a stretching speed of 22.5 mm/s. The resistance value of 
the sample was measured both before and after 100 cycles. 
As demonstrated in Figure 9(b,c), the mean discrepancy 
between loading and unloading is 26.04X and 20.26X, while 
the peak difference is 61.42X and 46.27X, respectively. The 
results indicated the sample showed consistent sensitivities 
and sensing ranges.

In summary, in this stage of exploration of sensing mate
rials, we first studied the fabric deformation around the 
movable joint during running and determined the main 
strain range for the fabric of different lengths. We then eval
uated the sensor performance within the targeted range 
(10%–60%) regarding its linearity and stability at different 

Figure 7. Close-up of sensor output at 80% strain.

Figure 8. Variation curve of resistance value with sensor strain.

Figure 9. (a) Hysteresis of strain sensor sample 2; (b) results of repeated tensile tests in stretching state; (c) results of repeated tensile tests in relaxing state.
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configurations. Finally, we tested the hysteresis and repeat
ability of the selected sample to validate the performance. 
These results informed our decisions on the fabric sensor 
unit, a double-sided conductive elastic webbing with a 
10 mm width and 150 mm length. In the next stage, we fur
ther explore building the sensor network with the sensor 
units for recognizing more complex postures.

4. Stage two: sensor network design and prototype 
implementation

4.1. Identification of sensor nodes locations

In this stage, we focused on designing a sensor network that 
could monitor the deformation of multiple fabric sensor 
units distributed across the lower limbs, as shown in Figure 
10. The data collected by the sensor network aims to (1) 
identify running movements; (2) classify different running 

postures, such as the correct running posture and the poor 
postures that are prone to knee injuries. We conducted a 
comprehensive study and analysis of the movement charac
teristics of the human lower limb during running. 
Specifically, we examined the primary muscle groups 
engaged in running, as well as the muscle areas activated 
during instances of poor posture leading to knee injuries. 
Based on our research, we identified six key deployment 
areas for sensors: the posterior waist, hip, back of the thigh, 
lateral crotch (centered around the greater trochanter), outer 
thigh, and the anterior aspect of the knee joint. The inner 
thigh areas were not selected as the sensor placement area, 
considering that these areas are prone to friction during 
actual running movements, which may affect the sensor 
performance.

Figure 11 shows 10 sensor nodes located on a single side 
of the lower limb. In the anterior region of the knee, with 
the patella at the center (red dot at the knee joint 

Figure 10. Main areas for sensor locations.

Figure 11. The deployment of sensor nodes on main Active muscle areas.
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in Figure 11(a)), the sensor nodes 1, 2, and 3 are located 
along a line inclined at 45� vertically, left and right. During 
running, the knee joint is flexed and extended periodically, 
so nodes 1, 2, and 3 are expected to monitor whether the 
knee is internally or externally rotated and characterize the 
running cycles. At the lateral crotch and lateral thigh area, 
sensor node 4 is positioned at an angle of 45� from the cen
ter of the greater trochanter (red dot in Figure 11(b)). At 
the upper outer thigh, the positions along the line inclined 
at 45� on the left and right are used as sensor nodes 5, 6, 
and 7. They are expected to be sensitive to the internal and 
external rotation of the knee joint. In the posterior lumbar 
and buttock areas and the posterior thigh area, the lower 
end point of the sensor is the greater trochanter, and a pos
ition along an inclination of 45� is selected as the sensor 
node 8, together with sensor node 4, they are capable of 
monitor hip movements. Lastly, the midpoint of the divid
ing line between the buttocks and the posterior thighs is 
selected as the canter (red dot in Figure 11(c)), and the sen
sor nodes 9 and 10 are positioned at a vertical and 45�
inclination to monitor the pelvic rotation in the frontal 
plane.

4.2. Comparison experiments for sensor network

To further optimize the number and location of sensor 
nodes that could efficiently classify the target motions with 
lower cost and more comfort, we conducted comparison 
experiments to observe the data from sensor nodes under 
different simulated running activities. To do so, we devel
oped a testing legging prototype (see Figure 12) which 
enabled us to place the fabric sensors at multiple positions 
and test the results of different combinations. This prototype 
system served as the platform for exploring different sensor 
node configurations. The legging prototype was made of 
polyester material with a similar tension coefficient to the 
fabric sensor, to give a better fit and reduce interference by 
the clothing itself. We have pre-set snap buttons at the alter
native sensor nodes for sensor installation and removal. In 

this prototype, the snap buttons were sewn on both ends of 
the fabric sensor to connect to the Arduino board which 
captures the resistance change of each tensile textile sensor.

4.3. Final sensor network

The experiment used a multi-channel data monitoring 
method to compare the effectiveness of the different sensor 
nodes in characterizing running movement. The sensor out
puts are shown in Figure 13. In summary, among sensor 
nodes 1, 2, and 3, when characterizing the running cycle 
and the internal and external rotation of the knee joint, the 
sensor at node 1 shows the most significant resistance; 
between sensor nodes 4 and 8, when characterizing the 
crotch swing, the sensor at node 4 shows the most signifi
cant resistance changes; among sensor nodes, 5, 6 and 7, 
when characterizing the internal and external rotation of the 
knee joint, node 6 shows the most significant changes in the 
resistance of the sensor; between sensor nodes 9 and 10, 
when characterizing the pelvic rotation, the resistance of the 
sensor changes to a similar extent, but when characterizing 
the running cycle, the resistance of the sensor changes more 
significantly at node 9. Therefore, based on this observation, 
among ten sensor nodes, the location of nodes 1, 4, 6, and 9 
were finally selected for the deployment of the sensor net
work on a single side of the lower limb. The smart legging 
system adopted a sensor network with eight sensors which 
are distributed symmetrically on the left and right lower 
limbs to monitor the target running postures. Figure 14
demonstrates the layout of the eight sensors on the smart 
legging with front and back views.

5. Stage three: Smart tight system development

The final stage is to build a smart legging system with the 
selected sensor network. The system architecture is shown 
in Figure 15. This system consists of three parts: (1) the 
data sensing part consists of multiple fabric sensors to 

Figure 12. Testing legging prototype.
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collect posture information as a system input; (2) the data 
processing part which includes a posture classification model 
that could classify running postures based on real-time mul
tiple channels data from the sensor network; (3) the infor
mation output part which could provide the end-users 
multi-modal feedback.

In the development of the smart legging system, we take 
into account various factors, including posture recognition 
accuracy, wearability, comfort, and aesthetics. Specifically, 
We adopted the anchored pants to guarantee the fabric is 
skin-fitted and reduce the relative movement between the 
fabric and the body. The legging is made of stretchy and 

Figure 13. Sensor output from the multiple sensor nodes.

Figure 14. The layout of the 8 sensors on the smart legging with front and back views.
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comfortable quick-drying fabric, with an empire waist and 
stirrup design. We used the Seeeduino XIAO development 
board as the signal processor because it has rich analog 
interfaces to connect to eight sensor units. Also, its small 
size (23.5 mm � 17.5 mm) and lightweight (9 g) have little 
effect on physical movement. The sensor unit has been con
nected to the Seeeduino XIAO board by conductive yarns at 
both ends, and we used normal yarns with flat stitches to fix 
the sensor unit on the legging fabric (see Figure 16).

5.1. Smart legging prototype

Additionally, the resistance ratio of the sensor resistance to 
the transmission line plays a crucial role in determining the 
sensitivity of the voltage readings. Therefore, we dedicated 
some effort to ensuring their appropriate values. In an 
unstretched relaxed state, the resistivity values for the sensor 
and the conductive lines are 1830 X/m and 100 X/m, 
respectively. Each sensor unit consists of a 150 mm fabric 

Figure 15. System architecture.

Figure 16. The sensor unit is Sewed to the legging fabric and connected to seeeduin board by the conductive yarns.
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sensor with two 200 mm zigzag conductive lines attached at 
both ends. In this case, the resistance ratio of the sensor to 
conductive lines in one unit is approximately 6.9. In order 
to guarantee that the sensor’s resistance variations induce 
substantial voltage changes, we have included 100 X resis
tors in each circuit. As the stretchability and durability of 
the conductive yarn threads may affect the system’s reliabil
ity, in the early stage of prototyping, we conducted a manual 
stretching test that demonstrated the threads could stretch 
up to 150%, and thus ensured they could accommodate the 
most range of knee movement. Moreover, we designed a 
zigzag path for the conductive leads, which further improved 
their durability.

5.2. Running posture classification model

Human activity recognition is a typical multi-classification 
task that involves the collection of sensor data, algorithm 
selection, and model building. In recent years, deep learn
ing-based algorithms for activity recognition have been 
developed and have emerged as the dominant approach for 
classification. Typical deep learning models Mu and Zeng 
(2019) include convolutional neural networks (CNN), 
Multilayer Perception (MLP), recurrent neural networks 
(RNN), long short-term memory networks (LSTM), and etc. 
Given the dynamic and intricate nature of human running, 
which encompasses uncertain states and continuous changes, 
traditional CNNs or MLPs are reckoned to be inadequate in 
handling the complexity of this task, especially long-time 
distance features recognition Mu and Zeng (2019); Yin et al. 
(2017). While RNN models can handle time-sequential data, 
they are prone to the issues of vanishing or exploding gra
dients Shewalkar et al. (2019). In contrast, LSTM models 
exhibit superior performance in handling time-sequential 
data, rendering them better suited for the purpose of run
ning pose classification in this study. Therefore, we propose 
utilizing the LSTM neural network to achieve the task of 
running pose classification in this study. Figure 17 shows 
our procedure for building a deep-learning-based running 
posture classification model.

5.2.1. Data collection
Six young females aged from 22 to 27 (M¼ 26, SD ¼ 1.79) 
participated in the study. All participants have a good habit 
of running for more than 3 years, regularly running more 
than 3 times per week. In the smart legging system, the 

sensors are sewn to follow the location of the joints and 
muscles in the lower limbs of the body. The body circumfer
ence of the wearers will influence the initial value of the sensor 
resistance at each node. To ensure a certain degree of consist
ency in the areas monitored by the sensor network on the leg
ging prototype, the recruited participants have similar 
lower limb body measurements (height 162.17 ± 1.83 cm, 
weight 55.83 ± 2.56 kg, thigh circumference at the root 
56.67 ± 3.33 cm, mid-thigh circumference 51 ± 3.74, knee cir
cumference 36.33 ± 1.86, hip height 73.17 ± 3.71, and knee 
height 47.33 ± 1.5).

The study was carried out in a lab where the treadmill 
was placed on a stage and a laptop on the desk next to the 
stage. Before the data collection sessions, the participant 
watched a tutorial video and did a trial running session at a 
speed of 6 km/h to get familiar with the experiment set-up 
and specified running activities. The study consists of 5 ses
sions of data collection. In the first session, the participant 
kept still for 30 s during which the system recorded the ini
tial resistance value of all sensor nodes in the sensor net
work. Then, the participants completed the following four 
running sessions on a treadmill: running with good posture; 
running with a simulated improper posture of internal rota
tion of the knee; running with a simulated improper posture 
of external rotation of the knee; running with a simulated 
improper posture of hip joint instability. Each running ses
sion lasted about 2 min on average, during which the proto
type sensor data and video recording were stored when their 
movement has been stabilized. There was a 10 min break 
between each session.

5.2.2. Data processing
After collecting the experimental data from a cohort of 6 
participants, we first pre-processed the dataset of each run
ning session. Based on video observation, we selected a data 
segment of 30 s during which the participant maintained 
consistent running postures. To eliminate potential noise 
and baseline drift, each data segment was then calibrated by 
subtracting the average of the initial sensor values measured 
when the participant stood still. Thus, each calibrated data
set has the same length of 30 s and contains 8 channels of 
time-sequential data from the fabric sensor network 
recorded at a sampling rate of 259 Hz. The calibrated data 
were subsequently used to train and test the running pos
tures classification model using the artificial neural network 
LSTM (Long short-term memory).

Figure 17. The procedure of building the running posture classification model.
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5.2.3. Running posture recognition
Though intra-subject models are reckoned to be more accur
ate, they require extra training data of fresh users, which is 
less economical and feasible for potential large-scale applica
tions. Thus, we applied inter-subject model training and 
testing in this study to verify the possibility of wider applica
tion by developing a few standard models for different 
groups. 5 out of the 6 sets, which are respectively collected 
from different subjects, served as the training sets, while the 
remaining one (chosen randomly) is used as the test set. We 
used MATLAB (2018) to prepare and train the model. In 
order to train a machine learning model for classifying 
time-sequential data collected from the smart legging, we 
used an LSTM network as the core of our machine learning 
model, which excels at handling sequence data Mu and 
Zeng (2019); Yin et al. (2017), namely the runner’s time- 
sequential data representing running posture. In this study, 
the LSTM network accepts a sequential input with 8 chan
nels (the dimension of sensor network data) and finally pre
dicts users’ running posture. Specifically, a bidirectional 
LSTM layer with 200 hidden units is used to receive the 
input first. And The sequence from the last processing step 
is then fed to a full-connection layer with 4 units, finally fol
lowed by a softmax layer and a classification layer.

As shown in Figure 18, the results demonstrate the model’s 
feasibility in recognizing the two predominant categories of 
improper running postures, namely, internal and external rota
tion of the knees. Regarding the running activities with the 
improper posture of internal and external knee rotations, the 
classification model exhibits a high level of accuracy, achieving 
a prediction accuracy of approximately 99.1%. However, in 
case of the running activities with hip joint instability, the pre
diction accuracy needs further improvement.

5.3. Feedback design

According to Wang et al. (2017), the most commonly-used 
feedback modalities in wearable systems are visual, auditory, 

and haptic feedback. During running, the runner’s visual 
perception channel will be limited. Therefore, the feedback 
design in our system focused on using a combination of 
vibrotactile and auditory modalities for real-time eye-free 
feedback display. Specifically, the system is designed to pro
vide users with posture feedback and guidance tips to pre
vent their bad running posture that may cause knee injury.

Auditory feedback takes the form of verbal guidance. The 
level of detail in the verbal guidance is adapted to novice or 
experienced users. For novice runners who are new to the 
smart legging system, the feedback uses more explanatory 
prompts with details about how to adjust their current pos
ture to the correct posture. For instance, When the poor 
running posture of pelvic rotation is detected during the 
running, the novice user will receive the verbal feedback 
“Please pay attention to your hip area, engage your core 
muscles, stay stable, and avoid any unnecessary movement.”. 
When users have entered the stage of mastering the skill of 
adjusting running posture, the verbal feedback should be 
concise and require less time. Therefore, the feedback 
prompts normally consist of 3–4 words, which reduces the 
system’s use of the user’s attention. In the same condition, 
for experienced users, the feedback takes the form of a short 
reminder: “Attention, hip area!”. In addition, the auditory 
feedback utilizes a gentle voice which is more approachable 
and may stimulate users to respond more positively. The 
play of audio feedback is directly triggered by the model 
classification results. In MATLAB, the pre-recorded audio 
files are associated with specific classification labels and type 
of user (novice or experienced), so that when a targeted 
improper running posture is detected, the corresponding 
audio file is played by MATLAB function audioplayer. As 
shown in Figure 19, via the Bluetooth sport earphones, the 
user could promptly receive relevant verbal guidance during 
running activities.

In this study, we utilized two smart wristbands providing 
users with vibrotactile feedback. Based on the previous study 
Karuei et al. (2011), when walking on a treadmill without 

Figure 18. The prediction results of the classification model.
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visual cues, the vibration feedback at the wrist could be per
ceived most effectively. In contrast, the vibration feedback at 
the thigh location is less effective and less desirable user 
experience. Therefore, we used two sport wristbands convey
ing vibrotactile feedback via a variety of vibration patterns 
including continuous long vibrations, rapid short frequency 
continuous vibrations, and switching between left and right 
vibrations. In this study, the implementation of vibration 
feedback was achieved through the adoption of the Wizard 
of Oz approach Dow et al. (2005). Two wristbands were 
coupled with a smartphone via Bluetooth connection and 
controlled by a mobile APP. Based on the real-time classifi
cation results from Matlab, the experiment operator sent the 
APP commands to the wristbands, triggering the corre
sponding vibration patterns, see Figure 19.

6. Usability evaluations

The evaluation aimed to confirm the feasibility of the appli
cation of the conductive sensing network for motion moni
toring and verify the performance of the smart legging 
system in terms of system usability and user experience. In 
addition, through the evaluation, we also identified the 
advantages and shortcomings of the current solution in 
terms of rationality, novelty, and user satisfaction. These 
results informed the next step for optimization and iteration 
of the smart legging system.

6.1. Participants

Due to the size restrictions of the legging prototype, the six 
participants with similar physiques (height 162 ± 2cm, weight 
55 ± 3kg) who joined stage three were invited for system 
evaluation. Two of them were novice runners, two were 
amateur runners with 1–2 years of experience and the 

remaining two were experienced runners with more than 
two years of experience.

6.2. Procedures and measurements

Initially, the participants are instructed to wear the smart 
legging system and acquaint themselves with the surround
ings. Before the running session, the participants were asked 
to stand still on the treadmill for 30 s during which the ini
tial sensor data were collected and averaged for the resist
ance calibration. Then, in the follow-up 10-min running 
session, the participants were asked to perform the four 
kinds of running postures that were supposed to be recog
nized in the system. Specifically, the eight fabric sensors in 
the smart legging system collected the user’s running motion 
data, and the LSTM network-based machine learning model 
further analyzed these multiple-channel data and classified 
the running posture. And finally, based on the classification 
results, the system provided users with the corresponding 
posture feedback in real time.

After the running test, the participants filled out the User 
Experience Questionnaire (UEQ) Schrepp et al. (2017), which 
measures six key dimensions of user experience: attractive
ness, perspicuity, efficiency, dependability, stimulation, and 
novelty. The System Usability Scale(SUS) Lewis and Sauro 
(2009) was also used to evaluate the system’s usability. 
Finally, we interviewed each participant about their opinion 
and suggestions about the smart legging system regarding the 
aspects of wearability, comfort, usability, and reliability.

6.3. Results

Compared to the benchmark value at 68 Sauro (2011), the 
mean SUS score for the smart legging system is 80.42 (SD ¼
4.59), indicating a commendable level of usability. 

Figure 19. Usability evaluation study set-up and the system audio and vibration feedback design.
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Figure 20 shows the average scores of each scale of UEQ. 
According to Schrepp et al. (2014), our system was rated as 
“Excellent” in all dimensions except for “Perspicuity”. 
Specifically, the users gave high ratings to the dimensions of 
“Attractiveness” and “Novelty”. The good ratings in the 
dimensions of “Efficiency”, “Dependability”, and 
“Stimulation” indicated that the users were satisfied with the 
innovation of the wearable solution and the system’s ability 
to achieve its aim of alerting to incorrect running postures. 
In the dimension of “Perspicuity”, the users’ rating result 
was also benchmarked as “good” but scored lower than 
other dimensions. This was mainly because of the complex
ity of the tactile vibration feedback design and the lack of 
intuitive visual guidance in the initial phase.

Regarding the qualitative data, we analyzed the transcrip
tions of the interview recordings by using the content ana
lysis method. We found that all participants showed a 
positive attitude regarding the wearability and appearance of 
the system. The lightness and no need for extra bulky equip
ment made the smart tight system suitable for outdoor run
ning. For instance, one participant mentioned that “there is 
no major difference (between smart tight system) with ordin
ary leggings, and I can wear them comfortably during doing 
exercise or running.” The participants also expressed high 
demand for the personalized appearance of the smart tight 
system. Secondly, from the perspective of ease of use, they 
mentioned that a clear interaction process allowed them to 
understand the working of the system without extra effort. 
Thirdly, the feedback design of the system was generally 
considered acceptable, “without taking too much attention 
away from the running process.” However, two participants 
showed concerns about the system’s reliability, as when a 
relative sensor displacement occurs during running, it may 
reduce the accuracy of posture recognition and system feed
back. Participants also made suggestions for our future itera
tions, for example, addressing washability in our next step.

7. Discussion and future work

This research aims to develop a smart legging system to 
help runners learn and keep correct running postures. In 
the three-staged study, we first evaluated material 

performance and clarified the requirements of the single tex
tile sensor unit. And then we explored and optimized the 
placement of multiple sensor units and finalized the sensor 
network. Next, based on the sensor network, we developed 
corresponding machine-learning algorithms for running pos
ture classification. The smart legging prototype was eval
uated regarding its usability and user experience.

7.1. About sensor

Although new fabric materials are constantly researched 
Alam et al. (2022); Lu et al. (2023), how to apply the sensing 
materials into an everyday garment is still a common chal
lenge in wearable design. The different goals of human 
motion monitoring have specific requirements for fabric 
sensors regarding their strain range, sensitivity, and robust
ness. Therefore, before applying the sensor, understanding 
the features of the human movements to be monitored and 
further clarifying the sensor requirements are crucial. To 
explore the strain range of the fabric sensor around the knee 
joint, we performed manual measurements of the fabric 
deformation between marker points using a tape ruler while 
the participant was in a stationary position and stretching 
the outer thigh. While our current approach has proven 
effective, we recommend that future studies consider lever
aging photogrammetry and Digital Image Correlation (DIC) 
techniques Barrios-Muriel et al. (2017); Blenkinsopp (2015) 
for achieving more precise strain analysis of the fabric sen
sor during actual gait movements.

To determine the configurations of a single sensor unit 
for optimal performance, we then conducted a comparative 
test of the material of different widths, lengths, and config
uration parameters. Based on the sensing performance 
within the targeted strain range during running, we finally 
selected the double-sided conductive elastic webbing with a 
10 mm width and 150 mm length as the sensor unit. The 
advantages of the selected fabric sensor unit are its high lin
earity over a wide strain range, softness, comfort, and natur
alness. It has the potential to be used in other textile-based 
motion monitoring studies. The limitation of this fabric sen
sor is that it currently needs to be integrated into the gar
ment carrier by sewing, which requires a certain amount of 

Figure 20. The UEQ benchmark, Showing the scores for each subscale and their meaning.
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workmanship. Another limitation of our system is associated 
with the relatively low resistance value of the textile strain 
sensor. Strain sensors with low resistance tend to produce 
lower output voltages, which make them susceptible to noise 
from the readout circuitry. Besides, low resistance sensors 
also require a circuit to amplify and process their low output 
signals, which could consume more power. In future work, 
we propose investigating textile sensing materials with 
higher resistive values, a step that promises to enhance both 
robustness and the overall performance of the wearable gar
ment in everyday scenarios.

7.2. Sensor network

For monitoring complex movements and classifying differ
ent postures, we need a sensor network with multiple sen
sors covering movement characteristics. Therefore, in this 
study, we examined different sensor locations that are most 
sensitive to the target postures. One limitation of this study 
is that we had only chosen the participants with one type of 
body dimension. In the future, we plan to investigate the 
performance of the current sensor network with various 
groups with diverse body parameters. Moreover, personal
ized models have been demonstrated to exhibit higher 
accuracy in previous studies Esfahani and Nussbaum (2018); 
Gholami et al. (2018, 2019). Therefore, developing an effi
cient method for collecting personalized data from new 
users holds significant potential for future research. 
Currently, the sensor network is built for monitoring 4 tar
get running postures. Future studies may explore the possi
bility of extending or optimizing the sensor network to 
monitor more body postures in physical exercises. To 
achieve this, alternative types of sensors like IMU can be 
merged into the system Li et al. (2018); Lorussi et al. (2018); 
Ru et al. (2023); Watson et al. (2020); Zhu and Shi (2016) 
and enable it to recognize the moving direction and detect 
fall for example.

Although this study focused on monitoring lower body 
movements for recognizing improper running postures, 
upper body movements and foot postures also play a vital 
role in maintaining balance, stability, and overall running 
efficiency. Therefore, in future work, to achieve a more 
comprehensive running posture monitoring and perform
ance analysis, we suggest further extending the system’s 
capabilities by incorporating sensors distributed on the 
upper body and foot. Specifically, by integrating fabric stain 
sensors and IMU sensors within the upper body wearable 
garment to monitor the shoulder position, arm swing, and 
torso alignment, the future system could provide insights 
into the runner’s alignment, balance, stability, and core 
engagement. By incorporating force-sensitive resistors (FSR) 
and pressure sensors within the running shoe or insole, the 
future system could perform gait analysis of foot posture 
during running, including foot pronation and supination 
patterns, heel acceleration, and plantar pressure Bamberg 
et al. (2008); Elstub et al. (2022); Mat Dris et al. (2020). The 
feasibility of full-body distributed sensors for tracking full- 
body motion has been explored in previous studies Kim 

et al. (2019); Roetenberg et al. (2009). However, determin
ation of optimal locations of textile sensors and the design 
of comfortable wearable forms for running monitoring are 
challenging and complex tasks, we would encourage future 
work to apply textile sensor network simulation, using the 
analysis of skin deformation during target posture and cer
tain constraints to generate the layout network.

7.3. System design and evaluation

The motivation of this study is to develop an interactive 
wearable smart legging system by combining fabric sensors 
and machine learning algorithms to monitor lower limbs’ 
movement, classify improper running postures, and provide 
users with real-time feedback. Our three-stage approach 
started with the exploration of the characteristics of fabric 
sensing material and the configuration of the sensor unit. 
Based on the user experiment, we further developed a multi- 
sensor network for data collection. Lastly, the corresponding 
ML algorithms were developed to analyze multiple-channel 
sensor signals for posture recognition. The system still has 
many aspects that can be improved in future work. For 
instance, the smart legging prototype can be personalized 
and tailored to the individual’s unique body shape, size, and 
biomechanics, not only ensuring a better fit and comfort but 
also supporting sensors in precise locations to measure data 
accurately. While this study focused on the classification of 
three primary improper running postures using solely lower 
limb movement data, as discussed above, we suggest the 
sensor network be extended both in quantity and variety, 
for instance including IMU and textile sensors distributed 
on the upper body and FSR sensors on the insole. 
Accordingly, a smart running shirt and a smart running 
shoe can be designed to comprehend the current smart leg
ging system, as a running analysis kit.

In general, developing a smart garment system requires 
interdisciplinary collaboration. To achieve precise algorithms 
for angle estimation, gait analysis, and running performance 
evaluation, collaborative efforts with experts in sports medi
cine and data sciences are essential. This collaboration will 
ensure the availability of accurate training data and the 
development of reliable machine-learning models. Besides, 
to address the interactivity of the system for providing users 
with effective and user-friendly feedback, more collaboration 
with HCI designers is also needed. In our future work, we 
will further collaborate with user researchers and user 
experience designers to refine our design of haptic and audi
tory feedback regarding the modality, time, and frequency. 
Regarding evaluation, our study is limited to a small user 
population and a short period of time. In the future, we will 
then design and conduct a long-term study with a diversity 
of target users, to investigate the usefulness, effectiveness, 
and resilience of our system. Additionally, although the con
ductive material we used is sweat-resistant, due to the short 
test time, no heavy sweating occurred and the effect of sweat 
on the sensing unit needs to be further investigated.
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8. Conclusion

In conclusion, this study demonstrates the potential of fabric 
resistive strain sensors in developing a smart legging system 
for monitoring lower body motion during running. The 
study presents a comprehensive examination of the textile 
sensors in terms of linearity and reliability to determine the 
suitable sensor unit. The proposed sensor network with 
eight sensors was developed for capturing the characteristics 
of running postures. The LSTM machine learning model 
was developed to analyze the multiple channels sensor data 
and further classify three improper running postures and 
normal postures with a high accuracy rate of 99.1%. The 
evaluation of the smart legging system showed its potential 
in preventing knee injuries by providing continuous moni
toring and real-time feedback to help users adjust their run
ning postures. Overall, this study presents a promising 
approach to using smart textiles for motion monitoring in 
sports and fitness applications.

Notes

1. Flexpoint TM, https://flexpoint.com/
2. Spectra Symbol, https://www.jameco.com/Jameco/Products/ 

ProdDS/150551.pdf.
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