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ABSTRACT

Running is a highly popular form of exercise, while incorrect running posture over an extended
period can lead to severe knee injuries. Smart textiles have recently demonstrated significant
potential for continuous motion monitoring. This study involved the design and development of a
smart legging with a resistive textile sensor network to monitor lower body motion. The study
consists of three main parts. Firstly, we tested textile sensors in terms of linearity and robustness
to determine the basic sensor unit that can monitor the characteristics of running postures. Next,
optimal sensor placement was determined through comparison experiments, and a sensor net-
work was proposed. Finally, based on the LSTM model with data gathered from 6 participants, we
developed the smart legging system that is capable of identifying three types of improper running
postures and normal postures with 99.1% accuracy. The evaluation revealed that the smart leg-
ging system had the potential to help users adjust their running postures to prevent knee injury

KEYWORDS
Wearable technology;
textile sensor; posture
monitoring; machine
learning

through continuous monitoring and multi-modal feedback.

1. Introduction
1.1. Background

Running has been the most popular exercise because of its
widely known health benefits. Regular running, as aerobic
exercise, may reduce risk factors for cardiovascular disease
and obesity (Lee et al., 2014). However, poor running pos-
tures may lead to musculoskeletal injuries, especially in the
lower limbs (Van Gent et al., 2007). Incorrect running pos-
tures may disrupt the lower limb’s center of gravity, result-
ing in increased ground reaction forces on bones and joints
of the body. For instance, excessive internal and external
rotations of the knees and hip swings during running may
weaken the stabilizing forces and increase pressure on the
knee joints, which may cause knee injuries if it occurs over
an extended period (Fredericson & Misra, 2007; Taunton
et al, 2002; Van Gent et al., 2007). Therefore, continuous
posture monitoring and quick correction are crucial for
reducing injuries associated with running.

Recently, textile strain sensors have demonstrated their
potential in the field of posture monitoring, such as estimat-
ing elbow joint angle (Liu et al., 2019) and assessing lumbar
posture assessment (Vu et al., 2020). Advancements in mate-
rials and computing technologies have notably enhanced the
stability and precision of textile sensors. This improvement
is attributed to refined sensor preparation techniques,
machine learning (ML) algorithms, and the integration of
human-computer interaction (HCI). Despite these advance-
ments, the utilization of textile strain sensors for monitoring

running postures has received limited research attention.
Hence, this study aims to explore the integration of textile
strain sensors, deep learning algorithms, and HCI technolo-
gies to develop a smart legging wearable system capable of
monitoring running postures and providing multi-modal
feedback guidance during running.

1.2. Challenges and motivation

From the analysis of existing literature, we identified three
key challenges in employing textile strain sensors to develop
a smart legging system that aims at monitoring lower limbs’
movement and classifying improper running postures. The
first challenge is determining the configuration and arrange-
ment of textile strain sensors within a legging to ensure
accurate monitoring outcomes. The placement, orientation,
and quantity of sensors can significantly impact the accuracy
of a body motion tracking system (Tavassolian et al., 2020).
And these factors about sensor placement depend on the
features of the monitored body motion and the involved
joints. Therefore, specific methods are often required to
determine the placement of textile sensors in the develop-
ment of sensorized wearable garments. For instance, the
study by Tognetti et al. (2005) adopted a heuristic approach
that involved positioning sample sensors around the joints
of the upper limb, observing the data measurements during
the execution of natural movements, and ultimately deter-
mining the sensor placements that could produce most
meaningful outputs regarding movement reconstruction.
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In the study by Gholami et al. (2019), the authors utilized a
grid of markers and six motion capture cameras to analyze
the strains on the garment for finding the best sensor place-
ment for hip joint angle estimation. In this study, to address
this challenge, we first explored the performance of the fab-
ric sensing material to determine the configuration of the
basic sensor unit. Then we developed a prototype to test the
data outputs from different combinations of multiple sensor
locations. Based on the results, we determined the ultimate
sensor network that could effectively collect enough infor-
mation to infer the essential features concerning the running
posture.

The second challenge of designing a smart legging system
is identifying what types of improper running postures
should be monitored. Patellofemoral Pain Symptoms (PFPS)
and Iliotibial band syndrome (ITBS) are the two most
prevalent running-related injuries (Ferber et al, 2009;
Taunton et al.,, 2002). And PFPS affects approximately 13%
of runners. The research by Besier et al. (2001) about inten-
sive lower limb movement analysis has revealed that internal
and external rotation of the knee joint were the primary
postures that caused knee injuries during running. During
running, the movement of the hip joint also plays a crucial
role in maintaining proper alignment of the lower limb and
the stability of the knee. Pelvic rotation in the frontal plane
may place extra stress on the knee joint and cause its
instability (Willson et al., 2008). Hence, in this study, we
focused on the monitoring of three improper running pos-
tures that mostly cause knee injuries: internal and external
rotation of the knee, and hip joint instability, as shown in
Figure 1.
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Figure 1. lllustration of three most common improper running postures.
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The third challenge in developing the smart legging sys-
tem is how to translate the outcomes from the posture clas-
sification algorithms into effective feedback for end-users,
making them aware of their running posture and adjust the
incorrect posture timely. To address this challenge, the sys-
tem interactivity and user experience need to be considered
in the design of the smart legging system. While running,
timely intervention and guidance (Van Hooren et al., 2020)
upon detecting incorrect running postures not only can pre-
vent users from running injuries, but also help them relearn
the running skills and improve running performance. In the
sports and fitness industry, there has been a huge potential
market for interactive wearable products. In this study,
beyond the exploration of textile sensors and posture classi-
fication algorithms, we also preliminarily explored the inter-
action and feedback design for smart legging system.

1.3. Structure of the study

In this study, we developed a comfortable smart legging sys-
tem that can detect incorrect running postures and provide
users with multi-modal user feedback for injury prevention.
The system consists of an array of resistive textile strain sen-
sors and a corresponding deep-learning model to recognize
running postures. The system was evaluated among 6 partic-
ipants who were similar in size and fitted to the smart leg-
ging prototype. The results provided new insights for the
product development of sports manufacturers, and provide
future development possibilities and practical references for
stakeholders in smart textile and related fields. As shown in
Figure 2, the study includes three stages. In each stage, we
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Figure 2. Three stages of the study: (1) investigation of the sensor unit, (2) design of sensor network, and (3) development of the smart legging system.



focused on one of the following research questions (RQs)
corresponding to the challenges mentioned above:

e RQ1: What requirements should be included for the tex-
tile sensors?

e RQ2: How to optimize the sensor placements of the
smart legging?

e RQ3: To what extent would the smart legging prototype
be accurate regarding running posture classification and
acceptable regarding its usability?

In the remainder of the paper, we present the findings of
the first stage which investigated the textile sensor perform-
ance and the requirements for a sensor unit (to answer
RQ1). We then discuss the results of the second stage which
focused on the optimization of sensor placements and the
design of the sensor network (to answer RQ2). Next, we
present the development of the smart legging system which
integrates the sensor network and corresponding deep-learn-
ing algorithms for running posture classification. And lastly,
we discuss the final findings of the user study which eval-
uated the system regarding its usability and user experience
(to answer RQ3).

2. Related work
2.1. Advances in body motion monitoring technologies

Kinematics monitoring technologies are developed to cap-
ture and analyze body motion and are extensively applied in
sports analysis and rehabilitation to reduce the user’s risk of
exercise injuries and achieve the desired training effects
(Elvitigala et al., 2019). Marker-based optical motion capture
technique has been readily available for many years. And it
is commonly considered the gold standard for movement
monitoring due to its accurate results (Pellegrini et al., 2021;
Wang et al, 2017). Recently, various markerless solutions
are rapidly developed based on the combination of advanced
image processing algorithms and image capturing techniques
including Web camera, Kinect, and OpenPose (D’Antonio
et al., 2020; Wade et al., 2022). While optical-based motion
tracking systems require special set-up and high costs. They
are restricted by space and the complexity of the environ-
ment, which makes them not suitable for monitoring out-
door running.

In the last decades, due to the advantages of flexibility
and affordability, IMU-based (Inertial Measurement Units)
wearable systems have become mainstream in sport kine-
matics analysis (Rana & Mittal, 2021). As the IMU sensors
are compact and lightweight, they can be easily integrated
into wearable garments, monitoring the various types of
body motion, such as arm motion (Prayudi & Kim, 2012),
upper body motion (Filippeschi et al., 2017) and lower limb
motion (Hamdi et al., 2014). Nevertheless, IMU sensors
have certain limitations. For instance, they typically require
extra belts for mounting and are prone to displacement dur-
ing long-term use (Filippeschi et al, 2017; Wang et al,
2017). Consequently, improving wearability and comfort
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becomes the main challenge for IMU sensors in practical
applications.

In addition, various commercial strain sensors (Cha
et al,, 2017; Saggio et al., 2016) have been evaluated and uti-
lized to monitor human motion and estimate human joint
angles. For instance, commercial flex sensors by Flexpoint '
and Spectra® have been explored for limb motion tracking
(Borghetti et al., 2014). By stitching flex sensors at multiple
joint positions, the wearable garment could sense flexion
angles during static and kinematic motions (Abro et al,
2019). For instance, flex sensors are extensively used in vari-
ous glove-based systems (Dipietro et al., 2008) to measure
flexion of the joints in fingers and wrists. However, flex sen-
sors and piezoelectric films have limitations in wearable
design due to their inherent material rigidity. Their limited
flexibility, softness, and durability can restrict the natural
movement of the fabric and impede comfort for the wearer.

Recently, smart textiles also known as electronic textiles
(e-textiles) have attracted great research interest in the wear-
able motion monitoring community (Shi et al., 2020; Wang
et al., 2020). E-textiles incorporate electronic components
within their textile structure, endowing them with the ability
to fulfill both fabric and sensing functionalities. For instance,
through the intertwining of carbon fiber yarns onto polyur-
ethane fibers, the composite fiber demonstrates exceptional
strain-sensing properties, including enhanced conductivity,
sensitivity, and dynamic durability (Xu et al, 2023). By
employing customized conductive paints composed of polya-
niline and carbon nanotubes, the silk yarns can be endowed
with sensing capabilities to monitor various crucial signals,
including strain, temperature, and the presence of harmful
gases (Ouyang et al., 2022). Due to their merits of low cost,
lightweight, and flexibility, smart textiles can easily fit vari-
ous human bodies to track ambulatory and daily-life human
motion (Wang et al., 2020). Studies show that textile sensors
have been used in various applications, such as trunk moni-
toring (Mokhlespour Esfahani et al., 2017), shoulder kine-
matics (Jin et al, 2020), knee joint monitoring (Di Tocco
et al.,, 2021), etc.

2.2. Textile strain sensors for lower body motion
monitoring

Due to their comfort and flexibility, textile strain sensors
have been widely used in the fields of health, rehabilitation,
and sport (Choudhry et al, 2021). Being embedded into a
wearable garment, textile strain sensors could measure the
wearer’s body motions by the changes in the sensor’s resist-
ance, which are subsequently converted into an electrical
signal for further analysis and monitoring. Textile strain
sensors are often utilized to monitor joint movements and
characterize specific postures of the lower extremities. For
instance, by capturing activity signals from the knee, ankle,
and hip joints, textile strain sensors can monitor specific
lower limb movements Gholami et al. (2019); Totaro et al.
(2017). Munro et al. (2008) designed a smart knee sleeve to
detect the angle of knee flexion by adopting a conducting
polymer. Skach et al. (2019) proposed smarty pants for
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posture and behavior classification based on pressure sen-
sors. And Watson et al. (2020) succeeded in employing a
conductive fabric sensor to calculate knee angles.

Beyond the calculation of knee angles, textile strain sen-
sors can be utilized for monitoring more complex knee
movements. For instance, Li et al. (2019) located 10 knitted
conductive strain sensors around the knee joint, allowing for
the recognition of the four gait patterns of running, walking,
climbing, and descending stairs. Also, Gholami et al. (2019)
developed a system that employs textile strain sensors on
the pelvis, knee, and ankle to estimate the sagittal, frontal,
and cross-sectional angles of multiple joints during running.
A study by Tavassolian et al. (2020) developed new strain
sensors by embedding rectangular loops of the stretchable
conductive copper-coiled elastic thread on elastic textile.
With 4 sensors on the anterior and posterior sides of the
pelvic region, their setup achieved multi-axes hip angle
tracking.

2.3. Running movement monitoring

Running kinematics is the key factor associated with run-
ning injury (Van Gent et al,, 2007). And there is a growing
body of research that focuses on recognizing and analyzing
running postures (Lopez-Nava & Munoz-Melendez, 2016).
Running involves a range of movements within the lower
limbs, including the thigh, knee, leg, or foot (Folland et al.,
2017); therefore, running monitoring can be realized by
various wearable form-givings. For instance, to monitor
kinematic changes with fatigue, 12 wireless inertial measure-
ment units(IMUs) sensor devices are attached to the wear-
er’s foot, legs, arms, and wrist to capture the full body
movement throughout the runs (Strohrmann et al, 2012).
Being connected with two IMU sensors attached to the
wearers’ arms and legs, smartwatch APPs could recognize
the changes in running movement (Seuter et al, 2020).
Nevertheless, such systems relying on the placement of mul-
tiple sensors on the user’s body may be too obtrusive for
day-to-day wear.

To improve the runner’s comfort and system practicality,
a variety of shoe-based and insoles-based monitoring sys-
tems have been designed. For instance, Bamberg et al.
(2008) developed a GaitShoe system by integrating multiple
types of sensors including FSR, piezoelectric sensors, and
bend sensors to achieve complicated gait analysis. By the
integration of multiple force-sensitive resistors (FSR), ab
insole was enabled to detect the force distribution on the
runner’s foot (Mat Dris et al., 2020) and to recognize foot
pronation and supination (Dominguez-Morales et al., 2019),
the patterns of heel acceleration and plantar pressure for
characterizing postures (Sazonov et al., 2011). A recent study
(Elstub et al., 2022) developed a smart shoe system by com-
bining an inertial measurement unit (IMU) and pressure
insole with a trained algorithm to estimate tibial bone force
in running. Due to the location of sensors, shoe-based wear-
able systems are mostly effective in detecting foot position
and plantar pressure for running gait analysis, while detect-
ing specific improper running posture that involves the

rotation of the knee and hip joint instability can be chal-
lenging. This study aims to address this challenge.

Given that injuries related to running can arise due to
numerous factors of running gait, continuous multi-axis
kinematic monitoring of the lower extremities becomes a
crucial method in the analysis of running posture and gait.
This method requires the acquisition of movement data
from multiple points on the body. In terms of implementa-
tion, IMU sensors remain the predominant sensor type
incorporated in most wearable systems of running gait ana-
lysis (Mason et al., 2023). However, in long-term monitor-
ing, most IMU-based multi-sensor systems show significant
limitations including being prone to displacement, afflicting
with drift, challenging to align IMU’s coordinate system to
the physiological bone coordinate system Gholami et al.
(2019), and inadequate comfort. To address this challenge,
in this study, we embedded multiple soft textile strain sen-
sors into a running legging to improve wearability and com-
fort, and we further developed deep learning models to
process multi-channel motion data, achieving high accuracy
for the classification of targeted running postures.

3. Stage one: Exploration of the sensor unit

In the first stage, we focused on the exploration of the fabric
sensing material to clarify the requirements for the sensor
unit in the scenario of running posture monitoring. The
ideal fabric sensor should meet the following requirements:
(1) the sensor data exhibits a linear relationship with strain
over the strain range of the actual application, (2) the max-
imum strain range can monitor the large-scale dynamic
movement, and (3) the sensor data could remain robust,
reliable, and consistent in repeated multiple stretches. Before
we made the selection and configuration of the sensor unit,
we first studied the deformation and strain range of the fab-
ric around the knees, the major joint supporting running.

3.1. Study of the fabric deformation around the
movable joint

When individuals wear sports leggings, the fabric closely
adheres to the skin of their lower limbs and undergoes
deformation with the body’s movement. Previous studies
(Choi & Hong, 2015; Luo et al., 2017) suggested that the
knees are the main areas of skin deformation during wide-
ranging lower limb movements. Therefore, this study
focused on the strain range of the fabric around the knee
joints. During running, the fabric around knee joints will be
stretched and recovered repeatedly. To decide the maximum
strain range required for the fabric sensor in running move-
ment, it is supposed to find the maximum value within
which the fabric can be stretched as much as possible and
can still return to its original state and retain the original
resistance characteristics of the sensor.

In this study, we performed a stretching movement simu-
lation experiment to examine the required maximum strain
range. Compared to normal running, the stretch exercise
may induce larger fabric deformation, potentially leading to
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The width of the sensor is 1cm.
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Figure 4. (a) Schematic diagram of the principle of conductive fabric sensor (b) examples of the sensor samples, with the original resistance in 10 cm length.

the fabric sensor’s failure to restore its original characteris-
tics. As shown in Figure 3, on each lower limb, we selected
four marker points (P1-P4) that were symmetrically posi-
tioned along the central axis of the leg and knee joint. The
initial distances (D1, D2, D3) between each pair of adjacent
points on an unworn legging were set at 5cm. This enabled
the measurement of the fabric’s deformation at three lengths
(5cm, 10cm, and 15cm). Specifically, we estimated the
deformation of the 10 cm fabric by averaging the sum of D1
and D2 and the sum of D2 and D3. We observed the
deformation of the 15cm fabric by summing the values of
D1, D2, and D3. The D1, D2, and D3 were measured with a
tape ruler while the participant remained “stationary” and
“stretched the outer thigh” respectively. In each condition,
we measured D1, D2, and D3 three times for both the left
and right lower limbs. The average of these six measure-
ments was then calculated as the final value.

Next, we calculated the minimum and maximum deform-
ation ratio of the fabric in different lengths (5cm, 10cm,
and 15cm). By comparing the length of fabric measured in
the stationary condition to its original length, we calculated
the minimum deformation ratio of the fabric in the running
exercise. Similarly, we calculated the maximum deformation
ratio by comparing the fabric length with “stretching the
outer thigh” to its original length. The results showed that
the three fabric lengths displayed a similar minimum
deformation ratio at approximately 10%. The maximum

deformation ratio varies across fabric lengths: namely 80%
for 5cm, 70% for 10 cm, and 63% for 15 cm.

3.2. Sensor performance testing with different
configurations

In this study, we selected conductive elastic webbing (Taike,
Suzhou, CN; Braided structure with conductive silver fiber,
polyester, and latex silk) as the basic sensing fabric due to
its adequate performance regarding the linearity, stability,
and strain range requirement. Its elasticity is guaranteed by
its fabric structure and latex filaments. Figure 4(a) shows the
working principle of the conductive fabric sensor. When
being stretched, the contact points between the silver fibers
decrease, causing an increase in the resistance of the fabric.
When the sensor is not stretched, the fabric has a densely
woven fabric structure with maximal contact points. The
conductive elastic webbing could have different intrinsic
resistance based on its proportion of silver fibers and could
be customized in different widths and lengths. Therefore,
determining the configuration for the sensor unit becomes
the first crucial step in building a smart legging system.

To determine the suitable configuration of conductive
elastic webbing for monitoring running posture, we com-
pared a group of fabric sensor samples that differ in three
properties: intrinsic resistance, widths, and lengths, as shown
in Figure 4(b). Six sensor samples of different intrinsic
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Figure 6. Test results for various sensor samples under 60% and 80% strain.

resistance and widths (10 mm, 20 mm, and 35mm) were
examined. The test focused on two aspects of sensor per-
formance: linearity and recoverability. Firstly, regarding lin-
earity, resistance value versus strain should remain linear
with good repeatable stability during body movements.
Secondly, considering large deformations caused by stretch-
ing during running, the fabric sensor is required to recover
to its original state after being applied to the maximum
strain. As shown in Figure 5, a tensile resistance test plat-
form has been built with a stepper motor and an Arduino
development board. Each sensor sample was attached to a
slider that could move reciprocally within the specified dis-
tance range. The sensor samples were stretched with two
maximum strains (60% and 80%). The stretching speed was
set at 120 mm/min and the tensile tests were repeated in 20
cycles.

Figure 6 shows the recorded resistance changes of the
sensor samples under 60% and 80% strains. Most of the
samples had better linearity and sensitivity within the 60%
strain. In particular, the samples with lower intrinsic
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resistance (ST2, ST3, ST5, ST6) displayed more noise when
reaching approximately 80% strain. In comparison, the fab-
ric sensor samples ST1 (width = 20mm) and ST4 (width =
10mm) show better linearity and sensitivity within 60% of
the strain (as shown in Figure 6(a)) and also better stability
with less noise when close to 80% strain (Figure 6(b)). In
further comparison, ST4 (width = 10mm) had better stabil-
ity performance than ST1 (width = 20mm). For instance,
when reaching the maximum strain at 80%, ST1 showed a
slight deformation (see Figure 7). Therefore, 10 mm ST4 was
finally selected for further performance tests to specify the
parameters of the sensor unit.

After determining the intrinsic resistance and width, we
further explored the suitable length for the sensor unit.
Three 10mm wide sensor samples with different lengths
(sample 1: 100 mm length; sample 2: 150 mm length; sample
3: 200 mm length) were evaluated in the repeated tensile test
with 20 cycles. The stretching speed was set at 120 mm/min.
As shown in Figure 8, sample 2 (150 mm length) showed
better linear changes in resistance within the strain range of
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Figure 9. (a) Hysteresis of strain sensor sample 2; (b) results of repeated tensile tests in stretching state; (c) results of repeated tensile tests in relaxing state.

10-60% (see grey curves). A linear analysis was also per-
formed to compare the coefficient of determination (R%).
With a 60% maximum strain, sample 2 has the best sensor
linearity (R* = 0.995) compared to sample 1 (R*> = 0.987)
and sample 3 (R* = 0.989). The linear characteristic of sam-
ple 2 shows a gauge factor (GF = AR/Rye where AR is the
variation of the sensor resistance, R, is the original sensor
resistance, and ¢ is the applied strain) of about 23.24. A
high GF value is a positive factor for strain gauge realiza-
tion, and the GF value of our sample 2 from ST4 demon-
strates relative advantages compared to conventional textile
strain sensors Liang et al. (2019).

To further validate the performance of sensor sample 2,
we assessed its hysteresis and repeatability. Hysteresis holds
significant importance for strain sensors, given its adverse
impact on sensor durability (Schmool & Marké, 2018).
Figure 9(a) illustrates the hysteresis curve in the stretching-

relaxing cycles, the maximum hysteresis is 24.85%, which is
also comparable to typical textile strain sensors Liang et al.
(2019). For the evaluation of repeatability, the sample under-
went 100 cycles of stretch using the tensile testing platform,
with a stretching speed of 22.5 mm/s. The resistance value of
the sample was measured both before and after 100 cycles.
As demonstrated in Figure 9(b,c), the mean discrepancy
between loading and unloading is 26.04Q and 20.26€, while
the peak difference is 61.42Q and 46.27€, respectively. The
results indicated the sample showed consistent sensitivities
and sensing ranges.

In summary, in this stage of exploration of sensing mate-
rials, we first studied the fabric deformation around the
movable joint during running and determined the main
strain range for the fabric of different lengths. We then eval-
uated the sensor performance within the targeted range
(10%-60%) regarding its linearity and stability at different
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configurations. Finally, we tested the hysteresis and repeat-
ability of the selected sample to validate the performance.
These results informed our decisions on the fabric sensor
unit, a double-sided conductive elastic webbing with a
10 mm width and 150 mm length. In the next stage, we fur-
ther explore building the sensor network with the sensor
units for recognizing more complex postures.

4, Stage two: sensor network design and prototype
implementation

4.1. Identification of sensor nodes locations

In this stage, we focused on designing a sensor network that
could monitor the deformation of multiple fabric sensor
units distributed across the lower limbs, as shown in Figure
10. The data collected by the sensor network aims to (1)
identify running movements; (2) classify different running

Lateral
crotch

Outer
thigh

Front side of
the knee joint

Figure 10. Main areas for sensor locations.

(b)

The running cycles and internal and
external rotation of the knee joint.

Figure 11. The deployment of sensor nodes on main Active muscle areas.

Internal and external rotation
of the knee joint.

postures, such as the correct running posture and the poor
postures that are prone to knee injuries. We conducted a
comprehensive study and analysis of the movement charac-
teristics of the human lower limb during running.
Specifically, we examined the primary muscle groups
engaged in running, as well as the muscle areas activated
during instances of poor posture leading to knee injuries.
Based on our research, we identified six key deployment
areas for sensors: the posterior waist, hip, back of the thigh,
lateral crotch (centered around the greater trochanter), outer
thigh, and the anterior aspect of the knee joint. The inner
thigh areas were not selected as the sensor placement area,
considering that these areas are prone to friction during
actual running movements, which may affect the sensor
performance.

Figure 11 shows 10 sensor nodes located on a single side
of the lower limb. In the anterior region of the knee, with
the patella at the center (red dot at the knee joint

Rear ’
waist —p

Hip —»
Back of
thigh

Pelvic rotation in the frontal
plane.



INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 9

Figure 12. Testing legging prototype.

in Figure 11(a)), the sensor nodes 1, 2, and 3 are located
along a line inclined at 45° vertically, left and right. During
running, the knee joint is flexed and extended periodically,
so nodes 1, 2, and 3 are expected to monitor whether the
knee is internally or externally rotated and characterize the
running cycles. At the lateral crotch and lateral thigh area,
sensor node 4 is positioned at an angle of 45° from the cen-
ter of the greater trochanter (red dot in Figure 11(b)). At
the upper outer thigh, the positions along the line inclined
at 45° on the left and right are used as sensor nodes 5, 6,
and 7. They are expected to be sensitive to the internal and
external rotation of the knee joint. In the posterior lumbar
and buttock areas and the posterior thigh area, the lower
end point of the sensor is the greater trochanter, and a pos-
ition along an inclination of 45° is selected as the sensor
node 8, together with sensor node 4, they are capable of
monitor hip movements. Lastly, the midpoint of the divid-
ing line between the buttocks and the posterior thighs is
selected as the canter (red dot in Figure 11(c)), and the sen-
sor nodes 9 and 10 are positioned at a vertical and 45°
inclination to monitor the pelvic rotation in the frontal
plane.

4.2. Comparison experiments for sensor network

To further optimize the number and location of sensor
nodes that could efficiently classify the target motions with
lower cost and more comfort, we conducted comparison
experiments to observe the data from sensor nodes under
different simulated running activities. To do so, we devel-
oped a testing legging prototype (see Figure 12) which
enabled us to place the fabric sensors at multiple positions
and test the results of different combinations. This prototype
system served as the platform for exploring different sensor
node configurations. The legging prototype was made of
polyester material with a similar tension coefficient to the
fabric sensor, to give a better fit and reduce interference by
the clothing itself. We have pre-set snap buttons at the alter-
native sensor nodes for sensor installation and removal. In

this prototype, the snap buttons were sewn on both ends of
the fabric sensor to connect to the Arduino board which
captures the resistance change of each tensile textile sensor.

4.3. Final sensor network

The experiment used a multi-channel data monitoring
method to compare the effectiveness of the different sensor
nodes in characterizing running movement. The sensor out-
puts are shown in Figure 13. In summary, among sensor
nodes 1, 2, and 3, when characterizing the running cycle
and the internal and external rotation of the knee joint, the
sensor at node 1 shows the most significant resistance;
between sensor nodes 4 and 8, when characterizing the
crotch swing, the sensor at node 4 shows the most signifi-
cant resistance changes; among sensor nodes, 5, 6 and 7,
when characterizing the internal and external rotation of the
knee joint, node 6 shows the most significant changes in the
resistance of the sensor; between sensor nodes 9 and 10,
when characterizing the pelvic rotation, the resistance of the
sensor changes to a similar extent, but when characterizing
the running cycle, the resistance of the sensor changes more
significantly at node 9. Therefore, based on this observation,
among ten sensor nodes, the location of nodes 1, 4, 6, and 9
were finally selected for the deployment of the sensor net-
work on a single side of the lower limb. The smart legging
system adopted a sensor network with eight sensors which
are distributed symmetrically on the left and right lower
limbs to monitor the target running postures. Figure 14
demonstrates the layout of the eight sensors on the smart
legging with front and back views.

5. Stage three: Smart tight system development

The final stage is to build a smart legging system with the
selected sensor network. The system architecture is shown
in Figure 15. This system consists of three parts: (1) the
data sensing part consists of multiple fabric sensors to
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Figure 14. The layout of the 8 sensors on the smart legging with front and back views.

collect posture information as a system input; (2) the data
processing part which includes a posture classification model
that could classify running postures based on real-time mul-
tiple channels data from the sensor network; (3) the infor-
mation output part which could provide the end-users
multi-modal feedback.

In the development of the smart legging system, we take
into account various factors, including posture recognition
accuracy, wearability, comfort, and aesthetics. Specifically,
We adopted the anchored pants to guarantee the fabric is
skin-fitted and reduce the relative movement between the
fabric and the body. The legging is made of stretchy and



4 ’
Transmission ),/'

.
.

Modeling of running posture classification

i Information processing '

Raw electrical signal data

Running posture
2 classification model

~

o
Judge: -~ { B9

Figure 15. System architecture.

the pant (non-conductive fabric)

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 1"

Fabric sensor network design

~
E@E Microprocessor

Fabric sensor

A Fabric sensing network based
running posture monitoring
interactive system

---------------------------------- ; Ralainini-tioinotnt ottt ittt ittt 99

{ Information output

. ; Running posture $
*i., i classification results ,71'

88 /Convert

=2 Sl nal acquisition
.4 g q

S+, circuit ;
b5 Conductive thread

. Divider resistor

Multimodal feedback
design for running scen

P

o]
1
o
=,
(e}
73
aQ
=]
@
(=]
=
o
o
=]
=g}

g
(=
=
)
=
o
=]
oL
aQ
<
—
aQ
1723
Q
)
—
o
=
o
=]
oL

o]
(€}
=3
5
)
=]
(e}
(¢
-
aQ
17}
=
=

(5]

Sunoyiuowr 2xnysod Juruuni 10§ JuSWA0[dop IOSUSS OLIGR) UO YOIBISIY

@ Voice feedback

Vibration feedback

(‘ Multimodal feedback
») information

the sensor unit
the normal yarn

the conductive yarn

Figure 16. The sensor unit is Sewed to the legging fabric and connected to seeeduin board by the conductive yarns.

comfortable quick-drying fabric, with an empire waist and
stirrup design. We used the Seeeduino XIAO development
board as the signal processor because it has rich analog
interfaces to connect to eight sensor units. Also, its small
size (23.5mm x 17.5mm) and lightweight (9g) have little
effect on physical movement. The sensor unit has been con-
nected to the Seeeduino XIAO board by conductive yarns at
both ends, and we used normal yarns with flat stitches to fix
the sensor unit on the legging fabric (see Figure 16).

5.1. Smart legging prototype

Additionally, the resistance ratio of the sensor resistance to
the transmission line plays a crucial role in determining the
sensitivity of the voltage readings. Therefore, we dedicated
some effort to ensuring their appropriate values. In an
unstretched relaxed state, the resistivity values for the sensor
and the conductive lines are 1830 Q/m and 100 Q/m,
respectively. Each sensor unit consists of a 150 mm fabric
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sensor with two 200 mm zigzag conductive lines attached at
both ends. In this case, the resistance ratio of the sensor to
conductive lines in one unit is approximately 6.9. In order
to guarantee that the sensor’s resistance variations induce
substantial voltage changes, we have included 100 Q resis-
tors in each circuit. As the stretchability and durability of
the conductive yarn threads may affect the system’s reliabil-
ity, in the early stage of prototyping, we conducted a manual
stretching test that demonstrated the threads could stretch
up to 150%, and thus ensured they could accommodate the
most range of knee movement. Moreover, we designed a
zigzag path for the conductive leads, which further improved
their durability.

5.2. Running posture classification model

Human activity recognition is a typical multi-classification
task that involves the collection of sensor data, algorithm
selection, and model building. In recent years, deep learn-
ing-based algorithms for activity recognition have been
developed and have emerged as the dominant approach for
classification. Typical deep learning models Mu and Zeng
(2019) include convolutional neural networks (CNN),
Multilayer Perception (MLP), recurrent neural networks
(RNN), long short-term memory networks (LSTM), and etc.
Given the dynamic and intricate nature of human running,
which encompasses uncertain states and continuous changes,
traditional CNNs or MLPs are reckoned to be inadequate in
handling the complexity of this task, especially long-time
distance features recognition Mu and Zeng (2019); Yin et al.
(2017). While RNN models can handle time-sequential data,
they are prone to the issues of vanishing or exploding gra-
dients Shewalkar et al. (2019). In contrast, LSTM models
exhibit superior performance in handling time-sequential
data, rendering them better suited for the purpose of run-
ning pose classification in this study. Therefore, we propose
utilizing the LSTM neural network to achieve the task of
running pose classification in this study. Figure 17 shows
our procedure for building a deep-learning-based running
posture classification model.

5.2.1. Data collection

Six young females aged from 22 to 27 (M =26, SD = 1.79)
participated in the study. All participants have a good habit
of running for more than 3years, regularly running more
than 3 times per week. In the smart legging system, the

Data collection

Data processing

Figure 17. The procedure of building the running posture classification model.

sensors are sewn to follow the location of the joints and
muscles in the lower limbs of the body. The body circumfer-
ence of the wearers will influence the initial value of the sensor
resistance at each node. To ensure a certain degree of consist-
ency in the areas monitored by the sensor network on the leg-
ging prototype, the recruited participants have similar
lower limb body measurements (height 162.17+1.83cm,
weight 55.83 £2.56kg, thigh circumference at the root
56.67 +3.33 cm, mid-thigh circumference 51 + 3.74, knee cir-
cumference 36.33+1.86, hip height 73.17+3.71, and knee
height 47.33 + 1.5).

The study was carried out in a lab where the treadmill
was placed on a stage and a laptop on the desk next to the
stage. Before the data collection sessions, the participant
watched a tutorial video and did a trial running session at a
speed of 6km/h to get familiar with the experiment set-up
and specified running activities. The study consists of 5 ses-
sions of data collection. In the first session, the participant
kept still for 30 s during which the system recorded the ini-
tial resistance value of all sensor nodes in the sensor net-
work. Then, the participants completed the following four
running sessions on a treadmill: running with good posture;
running with a simulated improper posture of internal rota-
tion of the knee; running with a simulated improper posture
of external rotation of the knee; running with a simulated
improper posture of hip joint instability. Each running ses-
sion lasted about 2 min on average, during which the proto-
type sensor data and video recording were stored when their
movement has been stabilized. There was a 10 min break
between each session.

5.2.2. Data processing

After collecting the experimental data from a cohort of 6
participants, we first pre-processed the dataset of each run-
ning session. Based on video observation, we selected a data
segment of 30s during which the participant maintained
consistent running postures. To eliminate potential noise
and baseline drift, each data segment was then calibrated by
subtracting the average of the initial sensor values measured
when the participant stood still. Thus, each calibrated data-
set has the same length of 30s and contains 8 channels of
time-sequential data from the fabric sensor network
recorded at a sampling rate of 259 Hz. The calibrated data
were subsequently used to train and test the running pos-
tures classification model using the artificial neural network
LSTM (Long short-term memory).

Tranng Sequence 1, Festre |
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LSTM model
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5.2.3. Running posture recognition

Though intra-subject models are reckoned to be more accur-
ate, they require extra training data of fresh users, which is
less economical and feasible for potential large-scale applica-
tions. Thus, we applied inter-subject model training and
testing in this study to verify the possibility of wider applica-
tion by developing a few standard models for different
groups. 5 out of the 6 sets, which are respectively collected
from different subjects, served as the training sets, while the
remaining one (chosen randomly) is used as the test set. We
used MATLAB (2018) to prepare and train the model. In
order to train a machine learning model for classifying
time-sequential data collected from the smart legging, we
used an LSTM network as the core of our machine learning
model, which excels at handling sequence data Mu and
Zeng (2019); Yin et al. (2017), namely the runner’s time-
sequential data representing running posture. In this study,
the LSTM network accepts a sequential input with 8 chan-
nels (the dimension of sensor network data) and finally pre-
dicts users’ running posture. Specifically, a bidirectional
LSTM layer with 200 hidden units is used to receive the
input first. And The sequence from the last processing step
is then fed to a full-connection layer with 4 units, finally fol-
lowed by a softmax layer and a classification layer.

As shown in Figure 18, the results demonstrate the model’s
feasibility in recognizing the two predominant categories of
improper running postures, namely, internal and external rota-
tion of the knees. Regarding the running activities with the
improper posture of internal and external knee rotations, the
classification model exhibits a high level of accuracy, achieving
a prediction accuracy of approximately 99.1%. However, in
case of the running activities with hip joint instability, the pre-
diction accuracy needs further improvement.

5.3. Feedback design

According to Wang et al. (2017), the most commonly-used
feedback modalities in wearable systems are visual, auditory,
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Figure 18. The prediction results of the classification model.
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and haptic feedback. During running, the runner’s visual
perception channel will be limited. Therefore, the feedback
design in our system focused on using a combination of
vibrotactile and auditory modalities for real-time eye-free
feedback display. Specifically, the system is designed to pro-
vide users with posture feedback and guidance tips to pre-
vent their bad running posture that may cause knee injury.

Auditory feedback takes the form of verbal guidance. The
level of detail in the verbal guidance is adapted to novice or
experienced users. For novice runners who are new to the
smart legging system, the feedback uses more explanatory
prompts with details about how to adjust their current pos-
ture to the correct posture. For instance, When the poor
running posture of pelvic rotation is detected during the
running, the novice user will receive the verbal feedback
“Please pay attention to your hip area, engage your core
muscles, stay stable, and avoid any unnecessary movement.”.
When users have entered the stage of mastering the skill of
adjusting running posture, the verbal feedback should be
concise and require less time. Therefore, the feedback
prompts normally consist of 3-4 words, which reduces the
system’s use of the user’s attention. In the same condition,
for experienced users, the feedback takes the form of a short
reminder: “Attention, hip area!”. In addition, the auditory
feedback utilizes a gentle voice which is more approachable
and may stimulate users to respond more positively. The
play of audio feedback is directly triggered by the model
classification results. In MATLAB, the pre-recorded audio
files are associated with specific classification labels and type
of user (novice or experienced), so that when a targeted
improper running posture is detected, the corresponding
audio file is played by MATLAB function audioplayer. As
shown in Figure 19, via the Bluetooth sport earphones, the
user could promptly receive relevant verbal guidance during
running activities.

In this study, we utilized two smart wristbands providing
users with vibrotactile feedback. Based on the previous study
Karuei et al. (2011), when walking on a treadmill without
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visual cues, the vibration feedback at the wrist could be per-
ceived most effectively. In contrast, the vibration feedback at
the thigh location is less effective and less desirable user
experience. Therefore, we used two sport wristbands convey-
ing vibrotactile feedback via a variety of vibration patterns
including continuous long vibrations, rapid short frequency
continuous vibrations, and switching between left and right
vibrations. In this study, the implementation of vibration
feedback was achieved through the adoption of the Wizard
of Oz approach Dow et al. (2005). Two wristbands were
coupled with a smartphone via Bluetooth connection and
controlled by a mobile APP. Based on the real-time classifi-
cation results from Matlab, the experiment operator sent the
APP commands to the wristbands, triggering the corre-
sponding vibration patterns, see Figure 19.

6. Usability evaluations

The evaluation aimed to confirm the feasibility of the appli-
cation of the conductive sensing network for motion moni-
toring and verify the performance of the smart legging
system in terms of system usability and user experience. In
addition, through the evaluation, we also identified the
advantages and shortcomings of the current solution in
terms of rationality, novelty, and user satisfaction. These
results informed the next step for optimization and iteration
of the smart legging system.

6.1. Participants

Due to the size restrictions of the legging prototype, the six
participants with similar physiques (height 162 + 2cm, weight
55+ 3kg) who joined stage three were invited for system
evaluation. Two of them were novice runners, two were
amateur runners with 1-2years of experience and the

remaining two were experienced runners with more than
two years of experience.

6.2. Procedures and measurements

Initially, the participants are instructed to wear the smart
legging system and acquaint themselves with the surround-
ings. Before the running session, the participants were asked
to stand still on the treadmill for 30 s during which the ini-
tial sensor data were collected and averaged for the resist-
ance calibration. Then, in the follow-up 10-min running
session, the participants were asked to perform the four
kinds of running postures that were supposed to be recog-
nized in the system. Specifically, the eight fabric sensors in
the smart legging system collected the user’s running motion
data, and the LSTM network-based machine learning model
further analyzed these multiple-channel data and classified
the running posture. And finally, based on the classification
results, the system provided users with the corresponding
posture feedback in real time.

After the running test, the participants filled out the User
Experience Questionnaire (UEQ) Schrepp et al. (2017), which
measures six key dimensions of user experience: attractive-
ness, perspicuity, efficiency, dependability, stimulation, and
novelty. The System Usability Scale(SUS) Lewis and Sauro
(2009) was also used to evaluate the system’s usability.
Finally, we interviewed each participant about their opinion
and suggestions about the smart legging system regarding the
aspects of wearability, comfort, usability, and reliability.

6.3. Results

Compared to the benchmark value at 68 Sauro (2011), the
mean SUS score for the smart legging system is 80.42 (SD =
4.59), indicating a commendable level of usability.
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Figure 20 shows the average scores of each scale of UEQ.
According to Schrepp et al. (2014), our system was rated as
“Excellent” in all dimensions except for “Perspicuity”.
Specifically, the users gave high ratings to the dimensions of
“Attractiveness” and “Novelty”. The good ratings in the
dimensions  of  “Efficiency”,  “Dependability”,  and
“Stimulation” indicated that the users were satisfied with the
innovation of the wearable solution and the system’s ability
to achieve its aim of alerting to incorrect running postures.
In the dimension of “Perspicuity”, the users’ rating result
was also benchmarked as “good” but scored lower than
other dimensions. This was mainly because of the complex-
ity of the tactile vibration feedback design and the lack of
intuitive visual guidance in the initial phase.

Regarding the qualitative data, we analyzed the transcrip-
tions of the interview recordings by using the content ana-
lysis method. We found that all participants showed a
positive attitude regarding the wearability and appearance of
the system. The lightness and no need for extra bulky equip-
ment made the smart tight system suitable for outdoor run-
ning. For instance, one participant mentioned that “there is
no major difference (between smart tight system) with ordin-
ary leggings, and I can wear them comfortably during doing
exercise or running.” The participants also expressed high
demand for the personalized appearance of the smart tight
system. Secondly, from the perspective of ease of use, they
mentioned that a clear interaction process allowed them to
understand the working of the system without extra effort.
Thirdly, the feedback design of the system was generally
considered acceptable, “without taking too much attention
away from the running process.” However, two participants
showed concerns about the system’s reliability, as when a
relative sensor displacement occurs during running, it may
reduce the accuracy of posture recognition and system feed-
back. Participants also made suggestions for our future itera-
tions, for example, addressing washability in our next step.

7. Discussion and future work

This research aims to develop a smart legging system to
help runners learn and keep correct running postures. In
the three-staged study, we first evaluated material
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performance and clarified the requirements of the single tex-
tile sensor unit. And then we explored and optimized the
placement of multiple sensor units and finalized the sensor
network. Next, based on the sensor network, we developed
corresponding machine-learning algorithms for running pos-
ture classification. The smart legging prototype was eval-
uated regarding its usability and user experience.

7.1. About sensor

Although new fabric materials are constantly researched
Alam et al. (2022); Lu et al. (2023), how to apply the sensing
materials into an everyday garment is still a common chal-
lenge in wearable design. The different goals of human
motion monitoring have specific requirements for fabric
sensors regarding their strain range, sensitivity, and robust-
ness. Therefore, before applying the sensor, understanding
the features of the human movements to be monitored and
further clarifying the sensor requirements are crucial. To
explore the strain range of the fabric sensor around the knee
joint, we performed manual measurements of the fabric
deformation between marker points using a tape ruler while
the participant was in a stationary position and stretching
the outer thigh. While our current approach has proven
effective, we recommend that future studies consider lever-
aging photogrammetry and Digital Image Correlation (DIC)
techniques Barrios-Muriel et al. (2017); Blenkinsopp (2015)
for achieving more precise strain analysis of the fabric sen-
sor during actual gait movements.

To determine the configurations of a single sensor unit
for optimal performance, we then conducted a comparative
test of the material of different widths, lengths, and config-
uration parameters. Based on the sensing performance
within the targeted strain range during running, we finally
selected the double-sided conductive elastic webbing with a
10mm width and 150 mm length as the sensor unit. The
advantages of the selected fabric sensor unit are its high lin-
earity over a wide strain range, softness, comfort, and natur-
alness. It has the potential to be used in other textile-based
motion monitoring studies. The limitation of this fabric sen-
sor is that it currently needs to be integrated into the gar-
ment carrier by sewing, which requires a certain amount of



16 Q. WANG ET AL.

workmanship. Another limitation of our system is associated
with the relatively low resistance value of the textile strain
sensor. Strain sensors with low resistance tend to produce
lower output voltages, which make them susceptible to noise
from the readout circuitry. Besides, low resistance sensors
also require a circuit to amplify and process their low output
signals, which could consume more power. In future work,
we propose investigating textile sensing materials with
higher resistive values, a step that promises to enhance both
robustness and the overall performance of the wearable gar-
ment in everyday scenarios.

7.2. Sensor network

For monitoring complex movements and classifying differ-
ent postures, we need a sensor network with multiple sen-
sors covering movement characteristics. Therefore, in this
study, we examined different sensor locations that are most
sensitive to the target postures. One limitation of this study
is that we had only chosen the participants with one type of
body dimension. In the future, we plan to investigate the
performance of the current sensor network with various
groups with diverse body parameters. Moreover, personal-
ized models have been demonstrated to exhibit higher
accuracy in previous studies Esfahani and Nussbaum (2018);
Gholami et al. (2018, 2019). Therefore, developing an effi-
cient method for collecting personalized data from new
users holds significant potential for future research.
Currently, the sensor network is built for monitoring 4 tar-
get running postures. Future studies may explore the possi-
bility of extending or optimizing the sensor network to
monitor more body postures in physical exercises. To
achieve this, alternative types of sensors like IMU can be
merged into the system Li et al. (2018); Lorussi et al. (2018);
Ru et al. (2023); Watson et al. (2020); Zhu and Shi (2016)
and enable it to recognize the moving direction and detect
fall for example.

Although this study focused on monitoring lower body
movements for recognizing improper running postures,
upper body movements and foot postures also play a vital
role in maintaining balance, stability, and overall running
efficiency. Therefore, in future work, to achieve a more
comprehensive running posture monitoring and perform-
ance analysis, we suggest further extending the system’s
capabilities by incorporating sensors distributed on the
upper body and foot. Specifically, by integrating fabric stain
sensors and IMU sensors within the upper body wearable
garment to monitor the shoulder position, arm swing, and
torso alignment, the future system could provide insights
into the runner’s alignment, balance, stability, and core
engagement. By incorporating force-sensitive resistors (FSR)
and pressure sensors within the running shoe or insole, the
future system could perform gait analysis of foot posture
during running, including foot pronation and supination
patterns, heel acceleration, and plantar pressure Bamberg
et al. (2008); Elstub et al. (2022); Mat Dris et al. (2020). The
feasibility of full-body distributed sensors for tracking full-
body motion has been explored in previous studies Kim

et al. (2019); Roetenberg et al. (2009). However, determin-
ation of optimal locations of textile sensors and the design
of comfortable wearable forms for running monitoring are
challenging and complex tasks, we would encourage future
work to apply textile sensor network simulation, using the
analysis of skin deformation during target posture and cer-
tain constraints to generate the layout network.

7.3. System design and evaluation

The motivation of this study is to develop an interactive
wearable smart legging system by combining fabric sensors
and machine learning algorithms to monitor lower limbs’
movement, classify improper running postures, and provide
users with real-time feedback. Our three-stage approach
started with the exploration of the characteristics of fabric
sensing material and the configuration of the sensor unit.
Based on the user experiment, we further developed a multi-
sensor network for data collection. Lastly, the corresponding
ML algorithms were developed to analyze multiple-channel
sensor signals for posture recognition. The system still has
many aspects that can be improved in future work. For
instance, the smart legging prototype can be personalized
and tailored to the individual’s unique body shape, size, and
biomechanics, not only ensuring a better fit and comfort but
also supporting sensors in precise locations to measure data
accurately. While this study focused on the classification of
three primary improper running postures using solely lower
limb movement data, as discussed above, we suggest the
sensor network be extended both in quantity and variety,
for instance including IMU and textile sensors distributed
on the upper body and FSR sensors on the insole.
Accordingly, a smart running shirt and a smart running
shoe can be designed to comprehend the current smart leg-
ging system, as a running analysis kit.

In general, developing a smart garment system requires
interdisciplinary collaboration. To achieve precise algorithms
for angle estimation, gait analysis, and running performance
evaluation, collaborative efforts with experts in sports medi-
cine and data sciences are essential. This collaboration will
ensure the availability of accurate training data and the
development of reliable machine-learning models. Besides,
to address the interactivity of the system for providing users
with effective and user-friendly feedback, more collaboration
with HCI designers is also needed. In our future work, we
will further collaborate with user researchers and user
experience designers to refine our design of haptic and audi-
tory feedback regarding the modality, time, and frequency.
Regarding evaluation, our study is limited to a small user
population and a short period of time. In the future, we will
then design and conduct a long-term study with a diversity
of target users, to investigate the usefulness, effectiveness,
and resilience of our system. Additionally, although the con-
ductive material we used is sweat-resistant, due to the short
test time, no heavy sweating occurred and the effect of sweat
on the sensing unit needs to be further investigated.



8. Conclusion

In conclusion, this study demonstrates the potential of fabric
resistive strain sensors in developing a smart legging system
for monitoring lower body motion during running. The
study presents a comprehensive examination of the textile
sensors in terms of linearity and reliability to determine the
suitable sensor unit. The proposed sensor network with
eight sensors was developed for capturing the characteristics
of running postures. The LSTM machine learning model
was developed to analyze the multiple channels sensor data
and further classify three improper running postures and
normal postures with a high accuracy rate of 99.1%. The
evaluation of the smart legging system showed its potential
in preventing knee injuries by providing continuous moni-
toring and real-time feedback to help users adjust their run-
ning postures. Overall, this study presents a promising
approach to using smart textiles for motion monitoring in
sports and fitness applications.

Notes

1. Flexpoint TM, https://flexpoint.com/
2. Spectra Symbol, https://www.jameco.com/Jameco/Products/
ProdDS/150551.pdf.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This project was funded by the National Natural Science Foundation of
China (62202335) and the Science and Technology Commission of
Shanghai Municipality (20YF1451200).

ORCID

Runhua Zhang ([5) http://orcid.org/0000-0002-0519-5148

References

Abro, Z. A, Yi-Fan, Z,, Nan-Liang, C., Cheng-Yu, H., Lakho, R. A, &
Halepoto, H. (2019). A novel flex sensor-based flexible smart gar-
ment for monitoring body postures. Journal of Industrial Textiles,
49(2), 262-274. https://doi.org/10.1177/1528083719832854

Alam, T., Saidane, F., Al Faisal, A., Khan, A., & Hossain, G. (2022).
Smart-textile strain sensor for human joint monitoring. Sensors and
Actuators A, 341, 113587. https://doi.org/10.1016/j.sna.2022.113587

Bamberg, S. J. M., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E,, &
Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless
sensor system. IEEE Transactions on Information Technology in
Biomedicine, 12(4), 413-423. https://doi.org/10.1109/TITB.2007.
899493

Barrios-Muriel, J., Alonso Sanchez, F. J., Salgado, D. R., & Romero-
Sanchez, F. (2017). A new methodology to identify minimum strain
anatomical lines based on 3-d digital image correlation. Mechanical
Sciences, 8(2), 337-347. https://doi.org/10.5194/ms-8-337-2017

Besier, T. F., Lloyd, D. G., Cochrane, J. L., & Ackland, T. R. (2001).
External loading of the knee joint during running and cutting
maneuvers. Medicine and Science in Sports and Exercise, 33(7),
1168-1175. https://doi.org/10.1097/00005768-200107000-00014

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 17

Blenkinsopp, R. (2015). A method for measuring human foot shape dur-
ing running  stance. [Unpublished doctoral dissertation].
Loughborough University.

Borghetti, M., Sardini, E., & Serpelloni, M. (2014). Evaluation of bend
sensors for limb motion monitoring [Paper presentation]. 2014 IEEE
International ~ Symposium on Medical Measurements and
Applications (Memea) (pp. 1-5). https://doi.org/10.1109/MeMeA.
2014.6860127

Cha, Y., Seo, J., Kim, J.-S., & Park, J.-M. (2017). Human-computer
interface glove using flexible piezoelectric sensors. Smart Materials
and Structures, 26(5), 057002. https://doi.org/10.1088/1361-665X/
aa6b64

Choi, J., & Hong, K. (2015). 3d skin length deformation of lower body
during knee joint flexion for the practical application of functional
sportswear. Applied Ergonomics, 48, 186-201. https://doi.org/10.
1016/j.apergo.2014.11.016

Choudhry, N. A., Arnold, L., Rasheed, A., Khan, I. A., & Wang, L.
(2021). Textronics—a review of textile-based wearable electronics.
Advanced Engineering Materials, 23(12), 2100469. https://doi.org/10.
1002/adem.202100469

D’Antonio, E., Taborri, J., Palermo, E., Rossi, S., & Patane, F. (2020). A
markerless system for gait analysis based on openpose library [Paper
presentation]. 2020 IEEE International Instrumentation and
Measurement  Technology = Conference (i2mtc) (pp. 1-6).
IEEE.https://doi.org/10.1109/12MTC43012.2020.9128918

Dipietro, L., Sabatini, A. M., & Dario, P. (2008). A survey of glove-
based systems and their applications. IEEE Transactions on Systems,
Man, and Cybernetics C, 38(4), 461-482. https://doi.org/10.1109/
TSMCC.2008.923862

Di Tocco, J., Carnevale, A. Presti, D. L., Bravi, M., Bressi, F.,
Miccinilli, S., Sterzi, S., Longo, U. G., Denaro, V., Schena, E.,
Massaroni, C. (2021). Wearable device based on a flexible conduct-
ive textile for knee joint movements monitoring. IEEE Sensors
Journal, 21(23), 26655-26664. https://doi.org/10.1109/JSEN.2021.
3122585

Dominguez-Morales, M. ], Luna-Perejon, F., Mir6-Amarante, L.,
Herndndez-Veldzquez, M., & Sevillano-Ramos, J. L. (2019). Smart
footwear insole for recognition of foot pronation and supination
using neural networks. Applied Sciences, 9(19), 3970. https://doi.org/
10.3390/app9193970

Dow, S., Maclntyre, B., Lee, J., Oezbek, C., Bolter, J. D., & Gandy, M.
(2005). Wizard of oz support throughout an iterative design process.
IEEE Pervasive Computing, 4(4), 18-26. https://doi.org/10.1109/
MPRYV.2005.93

Elstub, L., Nurse, C., Grohowski, L., Volgyesi, P., Wolf, D., & Zelik, K.
(2022). Tibial bone forces can be monitored using shoe-worn wear-
able sensors during running. Journal of Sports Sciences, 40(15),
1741-1749. https://doi.org/10.1080/02640414.2022.2107816

Elvitigala, D. S., Matthies, D. J., David, L., Weerasinghe, C.,
Nanayakkara, S. (2019). Gymsoles: Improving squats and dead-lifts
by visualizing the user’s center of pressure. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (pp.
1-12).

Esfahani, M. I. M., & Nussbaum, M. A. (2018). A “smart” undershirt
for tracking upper body motions: Task classification and angle esti-
mation. IEEE Sensors Journal, 18(18), 7650-7658. https://doi.org/10.
1109/JSEN.2018.2859626

Ferber, R., Hreljac, A., & Kendall, K. D. (2009). Suspected mechanisms
in the cause of overuse running injuries: A clinical review. Sports
Health, 1(3), 242-246. https://doi.org/10.1177/1941738109334272

Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., &
Stricker, D. (2017). Survey of motion tracking methods based on
inertial sensors: A focus on upper limb human motion. Sensors,
17(6), 1257. https://doi.org/10.3390/s17061257

Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester,
S. E. (2017). Running technique is an important component of run-
ning economy and performance. Medicine and Science in Sports and
Exercise, 49(7), 1412-1423. https://doi.org/10.1249/MSS.0000000
000001245


https://flexpoint.com/
https://www.jameco.com/Jameco/Products/ProdDS/150551.pdf
https://www.jameco.com/Jameco/Products/ProdDS/150551.pdf
https://doi.org/10.1177/1528083719832854
https://doi.org/10.1016/j.sna.2022.113587
https://doi.org/10.1109/TITB.2007.899493
https://doi.org/10.1109/TITB.2007.899493
https://doi.org/10.5194/ms-8-337-2017
https://doi.org/10.1097/00005768-200107000-00014
https://doi.org/10.1109/MeMeA.2014.6860127
https://doi.org/10.1109/MeMeA.2014.6860127
https://doi.org/10.1088/1361-665X/aa6b64
https://doi.org/10.1088/1361-665X/aa6b64
https://doi.org/10.1016/j.apergo.2014.11.016
https://doi.org/10.1016/j.apergo.2014.11.016
https://doi.org/10.1002/adem.202100469
https://doi.org/10.1002/adem.202100469
https://doi.org/10.1109/I2MTC43012.2020.9128918
https://doi.org/10.1109/TSMCC.2008.923862
https://doi.org/10.1109/TSMCC.2008.923862
https://doi.org/10.1109/JSEN.2021.3122585
https://doi.org/10.1109/JSEN.2021.3122585
https://doi.org/10.3390/app9193970
https://doi.org/10.3390/app9193970
https://doi.org/10.1109/MPRV.2005.93
https://doi.org/10.1109/MPRV.2005.93
https://doi.org/10.1080/02640414.2022.2107816
https://doi.org/10.1109/JSEN.2018.2859626
https://doi.org/10.1109/JSEN.2018.2859626
https://doi.org/10.1177/1941738109334272
https://doi.org/10.3390/s17061257
https://doi.org/10.1249/MSS.0000000000001245
https://doi.org/10.1249/MSS.0000000000001245

18 Q. WANG ET AL.

Fredericson, M., & Misra, A. K. (2007). Epidemiology and aetiology of
marathon running injuries. Sports Medicine, 37(4-5), 437-439.
https://doi.org/10.2165/00007256-200737040-00043

Gholami, M., Ejupi, A., Rezaei, A., Ferrone, A., & Menon, C. (2018).
Estimation of knee joint angle using a fabric-based strain sensor and
machine learning: A preliminary investigation [Paper presentation].
2018 7th IEEE International Conference on Biomedical Robotics
and Biomechatronics (Biorob) (pp. 589-594). IEEE. https://doi.org/
10.1109/BIOROB.2018.8487199

Gholami, M., Rezaei, A., Cuthbert, T. J., Napier, C., & Menon, C.
(2019). Lower body kinematics monitoring in running using fabric-
based wearable sensors and deep convolutional neural networks.
Sensors, 19(23), 5325. https://doi.org/10.3390/s19235325

Hamdi, M. M., Awad, M. I, Abdelhameed, M. M., & Tolbah, F. A.
(2014). Lower limb motion tracking using imu sensor network [Paper
presentation]. 2014 Cairo International Biomedical Engineering
Conference (CIBEC) (pp. 28-33). https://doi.org/10.1109/CIBEC.
2014.7020957

Jin, Y., Glover, C. M., Cho, H., Araromi, O. A., Graule, M. A, Li, N.,

. Walsh, C. J. (2020). Soft sensing shirt for shoulder kinematics
estimation [Paper presentation]. 2020 IEEE International Conference
on Robotics and Automation (ICRA) (pp. 4863-4869). IEEE.
https://doi.org/10.1109/ICRA40945.2020.9196586

Karuei, I., MacLean, K. E., Foley-Fisher, Z., MacKenzie, R., Koch, S., &
El-Zohairy, M. (2011). Detecting vibrations across the body in mobile
contexts [Paper presentation]. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 3267-
3276). https://doi.org/10.1145/1978942.1979426

Kim, D., Kwon, J., Han, S., Park, Y.-L., & Jo, S. (2019). Deep full-body
motion network for a soft wearable motion sensing suit.
IEEE/ASME Transactions on Mechatronics, 24(1), 56-66. https://doi.
org/10.1109/TMECH.2018.2874647

Lee, D-c.,, Pate, R. R., Lavie, C. J., Sui, X., Church, T. S., & Blair, S. N.
(2014). Leisure-time running reduces all-cause and cardiovascular
mortality risk. Journal of the American College of Cardiology, 64(5),
472-481. https://doi.org/10.1016/j.jacc.2014.04.058

Lewis, J. R., & Sauro, J. (2009). The factor structure of the system usabil-
ity scale [Paper presentation]. Proceedings of the Human Centered
Design: First International Conference, HCD 2009, Held as Part of
HCI International 2009, San Diego, CA, USA, July 19-24, 2009 (pp.
94-103).

Li, X.,, Wen, R,, Shen, Z., Wang, Z.,, Luk, K. D. K,, & Hu, Y. (2018). A
wearable detector for simultaneous finger joint motion measure-
ment. IEEE Transactions on Biomedical Circuits and Systems, 12(3),
644-654. https://doi.org/10.1109/TBCAS.2018.2810182

Li, Y., Miao, X,, Niu, L, Jiang, G., & Ma, P. (2019). Human motion
recognition of knitted flexible sensor in walking cycle. Sensors,
20(1), 35. https://doi.org/10.3390/s20010035

Liang, A., Stewart, R., & Bryan-Kinns, N. (2019). Analysis of sensitivity,
linearity, hysteresis, responsiveness, and fatigue of textile knit stretch
sensors. Sensors, 19(16), 3618. https://doi.org/10.3390/s19163618

Liu, R, Shao, Q., Wang, S., Ru, C., Balkcom, D., & Zhou, X. (2019).
Reconstructing human joint motion with computational fabrics.
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 3(1), 1-26. https://doi.org/10.1145/3314406

Lopez-Nava, I. H.,, & Munoz-Melendez, A. (2016). Wearable inertial
sensors for human motion analysis: A review. IEEE Sensors Journal,
16(22), 7821-7834. https://doi.org/10.1109/JSEN.2016.2609392

Lorussi, F., Lucchese, 1., Tognetti, A., & Carbonaro, N. (2018). A wear-
able system for remote monitoring of the treatments of musculoskel-
etal disorder [Paper presentation]. 2018 IEEE International
Conference on Smart Computing (Smartcomp) (pp. 362-367).
IEEE.https://doi.org/10.1109/SMARTCOMP.2018.00030

Lu, D., Liao, S., Chu, Y., Cai, Y., Wei, Q., Chen, K., & Wang, Q.
(2023). Highly durable and fast response fabric strain sensor for
movement monitoring under extreme conditions. Advanced Fiber
Materials, 5(1), 223-234. https://doi.org/10.1007/s42765-022-00211-1

Luo, S., Wang, J., Yao, X,, & Zhang, L. (2017). A novel method for
determining skin deformation of lower limb in cycling. The Journal

of the Textile Institute, 108(9), 1600-1608. https://doi.org/10.1080/
00405000.2016.1269403

Mason, R,, Pearson, L. T., Barry, G., Young, F., Lennon, O., Godfrey,
A., & Stuart, S. (2023). Wearables for running gait analysis: A sys-
tematic review. Sports Medicine, 53(1), 241-268. https://doi.org/10.
1007/540279-022-01760-6

Mat Dris, M. S, Ramli, M. H. M., Khusaini, N. S., Aziz, N,, &
Mohamed, Z. (2020). Design and development of insole monitoring
system for runner. Applied Mechanics and Materials, 899, 103-113.
https://doi.org/10.4028/www.scientific.net/ AMM.899.103

Mokhlespour Esfahani, M. L, Zobeiri, O., Moshiri, B., Narimani, R,
Mehravar, M., Rashedi, E., & Parnianpour, M. (2017). Trunk motion
system (TMS) using printed body worn sensor (BWS) via data
fusion approach. Semsors, 17(12), 112. https://doi.org/10.3390/
s17010112

Mu, R, & Zeng, X. (2019). A review of deep learning research. KSIT
Transactions on Internet and Information Systems (TIIS), 13(4),
1738-1764. https://doi.org/10.3837/tiis.2019.04.001

Munro, B. J., Campbell, T. E., Wallace, G. G., & Steele, J. R. (2008).
The intelligent knee sleeve: A wearable biofeedback device. Sensors
and Actuators B, 131(2), 541-547. https://doi.org/10.1016/j.snb.2007.
12.041

Ouyang, Z., Li, S, Liu, J., Yu, H.-Y,, Peng, L., Zheng, S., Xu, D., &
Tam, K. C. (2022). Bottom-up reconstruction of smart textiles with
hierarchical structures to assemble versatile wearable devices for
multiple signals monitoring. Nano Energy. 104(Pt A), 107963.
https://doi.org/10.1016/j.nanoen.2022.107963

Pellegrini, A. M., Wyss, D., & Gastaldi, L. (2021). Motion capture sys-
tems and wearable sensors: Recent advances in capturing human
movement. Sensors, 21(3), 690.

Prayudi, I, Kim, D. (2012). Design and implementation of imu-based
human arm motion capture system. In 2012 IEEE International
Conference on Mechatronics and Automation (pp. 670-675).

Rana, M., & Mittal, V. (2021). Wearable sensors for real-time kinemat-
ics analysis in sports: A review. IEEE Sensors Journal, 21(2), 1187-
1207. https://doi.org/10.1109/JSEN.2020.3019016

Roetenberg, D., Luinge, H., & Slycke, P. (2009). Xsens mvn: Full 6dof
human motion tracking using miniature inertial sensors. Xsens
Motion Technologies BV, 1, 1-7.

Ru, X,, Zhang, C., & Zhang, H. (2023). A method of hybrid fabric and
inertial sensor for human posture perception [Paper presentation].
2023 26th International Conference on Computer Supported
Cooperative Work in Design (Cscwd) (p. 1484-1489). https://doi.
org/10.1109/CSCWD57460.2023.10152797

Saggio, G., Riillo, F., Sbernini, L., & Quitadamo, L. R. (2016). Resistive
flex sensors: A survey. Smart Materials and Structures, 25(1),
013001. https://doi.org/10.1088/0964-1726/25/1/013001

Sauro, J. (2011). A practical guide to the system usability scale:
Background, benchmarks & best practices. Measuring Usability LLC.

Sazonov, E. S., Fulk, G, Hill, J., Schutz, Y., & Browning, R. (2011).
Monitoring of posture allocations and activities by a shoe-based
wearable sensor. IEEE Transactions on Bio-Medical Engineering,
58(4), 983-990. https://doi.org/10.1109/TBME.2010.2046738

Schmool, D., & Markd, D. (2018). Magnetism in solids: Hysteresis. In
S. Hashmi (Eds.), Reference module in materials science and materi-
als engineering. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.
11413-4

Schrepp, M., Hinderks, A., Thomaschewski, J. (2014). Applying the
user experience questionnaire (UEQ) in different evaluation scen-
arios. In Design, User Experience, and Usability. theories, Methods,
and Tools for Designing the User Experience: Third International
Conference, Duxu 2014, Held as Part of HCI International 2014,
Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, Part I 3 (pp.
383-392).

Schrepp, M., Thomaschewski, J., & Hinderks, A. (2017). Construction
of a benchmark for the user experience questionnaire (UEQ).
International  Journal of Interactive Multimedia and Artificial
Intelligence, 4(4), 40-44. https://doi.org/10.9781/ijimai.2017.445

Seuter, M., Pollock, A., Bauer, G., & Kray, C. (2020). Recognizing run-
ning movement changes with quaternions on a sports watch.


https://doi.org/10.2165/00007256-200737040-00043
https://doi.org/10.1109/BIOROB.2018.8487199
https://doi.org/10.1109/BIOROB.2018.8487199
https://doi.org/10.3390/s19235325
https://doi.org/10.1109/CIBEC.2014.7020957
https://doi.org/10.1109/CIBEC.2014.7020957
https://doi.org/10.1109/ICRA40945.2020.9196586
https://doi.org/10.1145/1978942.1979426
https://doi.org/10.1109/TMECH.2018.2874647
https://doi.org/10.1109/TMECH.2018.2874647
https://doi.org/10.1016/j.jacc.2014.04.058
https://doi.org/10.1109/TBCAS.2018.2810182
https://doi.org/10.3390/s20010035
https://doi.org/10.3390/s19163618
https://doi.org/10.1145/3314406
https://doi.org/10.1109/JSEN.2016.2609392
https://doi.org/10.1109/SMARTCOMP.2018.00030
https://doi.org/10.1007/s42765-022-00211-1
https://doi.org/10.1080/00405000.2016.1269403
https://doi.org/10.1080/00405000.2016.1269403
https://doi.org/10.1007/s40279-022-01760-6
https://doi.org/10.1007/s40279-022-01760-6
https://doi.org/10.4028/www.scientific.net/AMM.899.103
https://doi.org/10.3390/s17010112
https://doi.org/10.3390/s17010112
https://doi.org/10.3837/tiis.2019.04.001
https://doi.org/10.1016/j.snb.2007.12.041
https://doi.org/10.1016/j.snb.2007.12.041
https://doi.org/10.1016/j.nanoen.2022.107963
https://doi.org/10.1109/JSEN.2020.3019016
https://doi.org/10.1109/CSCWD57460.2023.10152797
https://doi.org/10.1109/CSCWD57460.2023.10152797
https://doi.org/10.1088/0964-1726/25/1/013001
https://doi.org/10.1109/TBME.2010.2046738
https://doi.org/10.1016/B978-0-12-803581-8.11413-4
https://doi.org/10.1016/B978-0-12-803581-8.11413-4
https://doi.org/10.9781/ijimai.2017.445

Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 4(4), 1-18. https://doi.org/10.1145/3432197

Shewalkar, A., Nyavanandi, D., & Ludwig, S. A. (2019). Performance
evaluation of deep neural networks applied to speech recognition:
RNN, LSTM and GRU. journal of Artificial Intelligence and Soft
Computing Research, 9(4), 235-245. https://doi.org/10.2478/jaiscr-
2019-0006

Shi, J., Liu, S., Zhang, L., Yang, B., Shu, L., Yang, Y., Ren, M., Wang,
Y., Chen, J., Chen, W., Chai, Y., & Tao, X., others. (2020). Smart
textile-integrated microelectronic systems for wearable applications.
Advanced Materials, 32(5), 1901958. https://doi.org/10.1002/adma.
201901958

Skach, S., Stewart, R., & Healey, P. G. (2019). Smarty pants: Exploring
textile pressure sensors in trousers for posture and behaviour classi-
fication. Multidisciplinary Digital Publishing Institute Proceedings,
32(1), 19. https://doi.org/10.3390/proceedings2019032019

Strohrmann, C., Harms, H., Kappeler-Setz, C., & Troster, G. (2012).
Monitoring kinematic changes with fatigue in running using body-worn
sensors. IEEE Transactions on Information Technology in Biomedicine,
16(5), 983-990. https://doi.org/10.1109/TITB.2012.2201950

Taunton, J. E,, Ryan, M. B., Clement, D., McKenzie, D. C., Lloyd-
Smith, D., & Zumbo, B. (2002). A retrospective case-control analysis
of 2002 running injuries. British Journal of Sports Medicine, 36(2),
95-101. https://doi.org/10.1136/bjsm.36.2.95

Tavassolian, M., Cuthbert, T. J., Napier, C., Peng, J., & Menon, C.
(2020). Textile-based inductive soft strain sensors for fast frequency
movement and their application in wearable devices measuring
multiaxial hip joint angles during running. Advanced Intelligent
Systems, 2(4), 1900165. https://doi.org/10.1002/aisy.201900165

Tognetti, A., Lorussi, F., Bartalesi, R., Quaglini, S., Tesconi, M.,
Zupone, G., & De Rossi, D. (2005). Wearable kinesthetic system for
capturing and classifying upper limb gesture in post-stroke rehabili-
tation. Journal of Neuroengineering and Rehabilitation, 2(1), 8.
https://doi.org/10.1186/1743-0003-2-8

Totaro, M., Poliero, T., Mondini, A., Lucarotti, C., Cairoli, G., Ortiz, J.,
& Beccai, L. (2017). Soft smart garments for lower limb joint pos-
ition analysis. Semsors, 17(10), 2314. https://doi.org/10.3390/
s17102314

Van Gent, R., Siem, D., van Middelkoop, M., Van Os, A., Bierma-
Zeinstra, S., & Koes, B. (2007). Incidence and determinants of lower
extremity running injuries in long distance runners: A systematic
review. British Journal of Sports Medicine, 41(8), 469-480; discussion
480. https://doi.org/10.1136/bjsm.2006.033548

Van Hooren, B., Goudsmit, J., Restrepo, J., & Vos, S. (2020). Real-time
feedback by wearables in running: Current approaches, challenges
and suggestions for improvements. Journal of Sports Sciences, 38(2),
214-230. https://doi.org/10.1080/02640414.2019.1690960

Vu, L. Q,, Kim, K. H,, Schulze, L. ], & Rajulu, S. L. (2020). Lumbar
posture assessment with fabric strain sensors. Computers in Biology
and Medicine, 118, 103624. https://doi.org/10.1016/j.compbiomed.
2020.103624

Wade, L, Needham, L., McGuigan, P., & Bilzon, J. (2022).
Applications and limitations of current markerless motion capture
methods for clinical gait biomechanics. Peer]. 10, €12995. https://doi.
org/10.7717/peerj.12995

Wang, J., Lu, C., & Zhang, K. (2020). Textile-based strain sensor for
human motion detection. Energy & Environmental Materials, 3(1),
80-100. https://doi.org/10.1002/eem2.12041

Wang, Q., Markopoulos, P, Yu, B, Chen, W., & Timmermans, A.
(2017). Interactive wearable systems for upper body rehabilitation: A

INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 19

systematic review. Journal of Neuroengineering and Rehabilitation,
14(1), 20. https://doi.org/10.1186/s12984-017-0229-y

Watson, A., Sun, M., Pendyal, S., & Zhou, G. (2020). Tracknee: Knee
angle measurement using stretchable conductive fabric sensors.
Smart Health, 15(2), 100092. https://doi.org/10.1016/j.smhl.2019.
100092

Willson, J. D., Binder-Macleod, S., & Davis, I. S. (2008). Lower extrem-
ity dynamics in females with and without patellofemoral pain during
running. Clinical Biomechanics, 23(2), 203-211. https://doi.org/10.
1016/j.clinbiomech.2007.08.025

Xu, D., Ouyang, Z., Dong, Y., Yu, H.-Y., Zheng, S., Li, S., & Tam,
K. C. (2023). Robust, breathable and flexible smart textiles as multi-
functional sensor and heater for personal health management.
Advanced Fiber Materials, 5(1), 282-295. https://doi.org/10.1007/
542765-022-00221-z

Yin, W,, Kann, K,, Yu, M., & Schiitze, H. (2017). Comparative study of
CNN and RNN for natural language processing. arXiv preprint
arXiv:1702.01923.

Zhu, K., & Shi, L. (2016). Motion control in vr—real-time up-per
limb tracking via imu and flex sensor (pp. 1-5). Stanford University.

About the authors

Qi Wang received her PhD degree from the Eindhoven University of
Technology (Tu/e). She is currently an associate professor in the
College of Design and Innovation, Tongji University. Her main
research focused on wearable systems based on smart textiles for
health.

Fang Cui received her Master of Engineering degree from the College
of Design and Innovation, Tongji University, in 2021. Her main
research focused on wearable systems based on smart textiles for
motion monitoring.

Runhua Zhang received her Bachelor of Engineering degree from
Sichuan University, Sichuan, China, in 2021. She is currently a gradu-
ate student at the College of Design and Innovation, Tongji University,
Shanghai, China. Her research interest focuses on Human-Computer
Interaction.

Leheng Chen received his Bachelor of Engineering degree from Tongji
University, Shanghai, China, in 2020. He is currently a graduate stu-
dent at the College of Design and Innovation, Tongji University,
Shanghai, China. His research interests encompass Human-AI
Cooperation and wearable technology.

Jialin Yuan received her Bachelor of Engineering degree from Tongji
University, Shanghai, China, in 2022. She is currently a graduate stu-
dent at the College of Design and Innovation, Tongji University,
Shanghai, China. Her research interests tends toward Human-
Computer Interaction.

Xiaohua Sun is a professor at the College of Design and Innovation,
Tongji University, China. She received her PhD degree in Design and
Computation from Massachusetts Institute of Technology in 2007. Her
research interests include human-robot interaction (HRI), smart health-
care and rehabilitation, and extended reality (XR), etc.

Bin Yu, Assistant Professor of Behavior Data Science at Nyenrode
Business University. He formerly worked at Philips Design (2019-
2022). He holds a PhD in Industrial Design (2018, TU/e) and an MS
in Biomedical Engineering (2012, Northeastern University). His current
research focuses on human-AI collaboration and data-driven behavior
change.


https://doi.org/10.1145/3432197
https://doi.org/10.2478/jaiscr-2019-0006
https://doi.org/10.2478/jaiscr-2019-0006
https://doi.org/10.1002/adma.201901958
https://doi.org/10.1002/adma.201901958
https://doi.org/10.3390/proceedings2019032019
https://doi.org/10.1109/TITB.2012.2201950
https://doi.org/10.1136/bjsm.36.2.95
https://doi.org/10.1002/aisy.201900165
https://doi.org/10.1186/1743-0003-2-8
https://doi.org/10.3390/s17102314
https://doi.org/10.3390/s17102314
https://doi.org/10.1136/bjsm.2006.033548
https://doi.org/10.1080/02640414.2019.1690960
https://doi.org/10.1016/j.compbiomed.2020.103624
https://doi.org/10.1016/j.compbiomed.2020.103624
https://doi.org/10.7717/peerj.12995
https://doi.org/10.7717/peerj.12995
https://doi.org/10.1002/eem2.12041
https://doi.org/10.1186/s12984-017-0229-y
https://doi.org/10.1016/j.smhl.2019.100092
https://doi.org/10.1016/j.smhl.2019.100092
https://doi.org/10.1016/j.clinbiomech.2007.08.025
https://doi.org/10.1016/j.clinbiomech.2007.08.025
https://doi.org/10.1007/s42765-022-00221-z
https://doi.org/10.1007/s42765-022-00221-z

	Designing Smart Legging for Posture Monitoring Based on Textile Sensing Networks
	Abstract
	Introduction
	Background
	Challenges and motivation
	Structure of the study

	Related work
	Advances in body motion monitoring technologies
	Textile strain sensors for lower body motion monitoring
	Running movement monitoring

	Stage one: Exploration of the sensor unit
	Study of the fabric deformation around the movable joint
	Sensor performance testing with different configurations

	Stage two: sensor network design and prototype implementation
	Identification of sensor nodes locations
	Comparison experiments for sensor network
	Final sensor network

	Stage three: Smart tight system development
	Smart legging prototype
	Running posture classification model
	Data collection
	Data processing
	Running posture recognition

	Feedback design

	Usability evaluations
	Participants
	Procedures and measurements
	Results

	Discussion and future work
	About sensor
	Sensor network
	System design and evaluation

	Conclusion
	Disclosure statement
	Funding
	Orcid
	References


